Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004227958> ?p ?o ?g. }
- W2004227958 abstract "Because of high spectral and temporal resolutions, large coverage and low cost, MODIS (Moderate Resolution Imaging Spectroradiometer) data has been widely used to extract information of forest types at regional, national and global scales. However, its coarse spatial resolution often leads to mixed pixels and impedes increasing classification accuracy of forest types. Spectral unmixing can, to some extent, increase the accuracy of classification. But, how to accurately extract pure endmembers for a study area is a great challenge. The selection of linear or non-linear spectral unmixing algorithm is another challenge. In this study, a method to extract endmembers - different land cover and vegetation types from MODIS images was developed. In this method, the time series of MODIS derived vegetation index was first obtained and the phenological variation of forest types were analyzed. Moreover, decision tree classification was then conducted and the obtained results were then used to enhance the extraction of endmembers. With the endmembers, linear spectral unmixing of MODIS images with and without constraints, and nonlinear spectral unmixing were finally carried out and the classification results were compared. In addition, for comparison, the classification was also made using a widely used classifier - maximum likelihood. This study was conducted in Hunan of China, where typical vegetation types included coniferous forests, deciduous forests, bamboo, and shrubs. Moreover, water, built up area, and agricultural lands were involved. The classification accuracy of the land cover types using MODIS images was assessed using the data from a total of 1179 forest inventory plots and the area data of the land cover classes from forest inventory across Hunan, and the classification results using Landsat Thematic Mapper™ images for Zhuzhou City of Hunan, respectively. The results showed that the overall accuracies for three kinds of validation data were 85.8%, 87.4% and 85.9% for linear spectral unmixing without constraints, 85.1%, 88.4% and 84.7% for linear spectral unmixing with constraints, 64.2%, 67.5% and 64.7% for nonlinear spectral unmixing, and 72.7%, 79.7% and 73.8% for maximum likelihood classifier. These implied that linear spectral unmixing regardless of with and without constraint led to much higher accuracy than the maximum likelihood classification and non-linear spectral unmixing." @default.
- W2004227958 created "2016-06-24" @default.
- W2004227958 creator A5005097745 @default.
- W2004227958 creator A5037989560 @default.
- W2004227958 creator A5041790532 @default.
- W2004227958 creator A5077539813 @default.
- W2004227958 creator A5086878627 @default.
- W2004227958 date "2014-06-01" @default.
- W2004227958 modified "2023-09-27" @default.
- W2004227958 title "Spectral unmixing of MODIS data based on improved endmember purification model: application to forest type identification" @default.
- W2004227958 cites W1966798775 @default.
- W2004227958 cites W1999791745 @default.
- W2004227958 cites W2006280268 @default.
- W2004227958 cites W2060384859 @default.
- W2004227958 cites W2079012755 @default.
- W2004227958 cites W2090980747 @default.
- W2004227958 cites W2093661729 @default.
- W2004227958 cites W2116309433 @default.
- W2004227958 cites W2128802552 @default.
- W2004227958 cites W2136635809 @default.
- W2004227958 cites W2168809519 @default.
- W2004227958 doi "https://doi.org/10.1109/eorsa.2014.6927885" @default.
- W2004227958 hasPublicationYear "2014" @default.
- W2004227958 type Work @default.
- W2004227958 sameAs 2004227958 @default.
- W2004227958 citedByCount "0" @default.
- W2004227958 crossrefType "proceedings-article" @default.
- W2004227958 hasAuthorship W2004227958A5005097745 @default.
- W2004227958 hasAuthorship W2004227958A5037989560 @default.
- W2004227958 hasAuthorship W2004227958A5041790532 @default.
- W2004227958 hasAuthorship W2004227958A5077539813 @default.
- W2004227958 hasAuthorship W2004227958A5086878627 @default.
- W2004227958 hasConcept C108597893 @default.
- W2004227958 hasConcept C115961682 @default.
- W2004227958 hasConcept C120665830 @default.
- W2004227958 hasConcept C121332964 @default.
- W2004227958 hasConcept C127413603 @default.
- W2004227958 hasConcept C130066347 @default.
- W2004227958 hasConcept C142724271 @default.
- W2004227958 hasConcept C146978453 @default.
- W2004227958 hasConcept C147176958 @default.
- W2004227958 hasConcept C1549246 @default.
- W2004227958 hasConcept C154945302 @default.
- W2004227958 hasConcept C159078339 @default.
- W2004227958 hasConcept C160633673 @default.
- W2004227958 hasConcept C169258074 @default.
- W2004227958 hasConcept C176641082 @default.
- W2004227958 hasConcept C18903297 @default.
- W2004227958 hasConcept C19269812 @default.
- W2004227958 hasConcept C205649164 @default.
- W2004227958 hasConcept C25989453 @default.
- W2004227958 hasConcept C2776133958 @default.
- W2004227958 hasConcept C2777007095 @default.
- W2004227958 hasConcept C2780648208 @default.
- W2004227958 hasConcept C33283694 @default.
- W2004227958 hasConcept C39432304 @default.
- W2004227958 hasConcept C41008148 @default.
- W2004227958 hasConcept C4792198 @default.
- W2004227958 hasConcept C58237817 @default.
- W2004227958 hasConcept C59822182 @default.
- W2004227958 hasConcept C62649853 @default.
- W2004227958 hasConcept C71924100 @default.
- W2004227958 hasConcept C75294576 @default.
- W2004227958 hasConcept C84525736 @default.
- W2004227958 hasConcept C86803240 @default.
- W2004227958 hasConceptScore W2004227958C108597893 @default.
- W2004227958 hasConceptScore W2004227958C115961682 @default.
- W2004227958 hasConceptScore W2004227958C120665830 @default.
- W2004227958 hasConceptScore W2004227958C121332964 @default.
- W2004227958 hasConceptScore W2004227958C127413603 @default.
- W2004227958 hasConceptScore W2004227958C130066347 @default.
- W2004227958 hasConceptScore W2004227958C142724271 @default.
- W2004227958 hasConceptScore W2004227958C146978453 @default.
- W2004227958 hasConceptScore W2004227958C147176958 @default.
- W2004227958 hasConceptScore W2004227958C1549246 @default.
- W2004227958 hasConceptScore W2004227958C154945302 @default.
- W2004227958 hasConceptScore W2004227958C159078339 @default.
- W2004227958 hasConceptScore W2004227958C160633673 @default.
- W2004227958 hasConceptScore W2004227958C169258074 @default.
- W2004227958 hasConceptScore W2004227958C176641082 @default.
- W2004227958 hasConceptScore W2004227958C18903297 @default.
- W2004227958 hasConceptScore W2004227958C19269812 @default.
- W2004227958 hasConceptScore W2004227958C205649164 @default.
- W2004227958 hasConceptScore W2004227958C25989453 @default.
- W2004227958 hasConceptScore W2004227958C2776133958 @default.
- W2004227958 hasConceptScore W2004227958C2777007095 @default.
- W2004227958 hasConceptScore W2004227958C2780648208 @default.
- W2004227958 hasConceptScore W2004227958C33283694 @default.
- W2004227958 hasConceptScore W2004227958C39432304 @default.
- W2004227958 hasConceptScore W2004227958C41008148 @default.
- W2004227958 hasConceptScore W2004227958C4792198 @default.
- W2004227958 hasConceptScore W2004227958C58237817 @default.
- W2004227958 hasConceptScore W2004227958C59822182 @default.
- W2004227958 hasConceptScore W2004227958C62649853 @default.
- W2004227958 hasConceptScore W2004227958C71924100 @default.
- W2004227958 hasConceptScore W2004227958C75294576 @default.
- W2004227958 hasConceptScore W2004227958C84525736 @default.
- W2004227958 hasConceptScore W2004227958C86803240 @default.
- W2004227958 hasLocation W20042279581 @default.
- W2004227958 hasOpenAccess W2004227958 @default.