Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004228432> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2004228432 endingPage "2007" @default.
- W2004228432 startingPage "2002" @default.
- W2004228432 abstract "Variational Bayes learning or mean field approximation is widely used in statistical models which are made of mixtures of exponential distributions, for example, normal mixtures, binomial mixtures, and hidden Markov models. To derive variational Bayes learning algorithm, we need to determine the hyperparameters in the a priori distribution; however, the design method of hyperparameters has not yet been established. In the present paper, we propose two different design methods of hyperparameters which are applied to the different purposes. In the former method, the hyperparameter is determined for minimization of the generalization error. In the latter method, it is chosen so that candidates of hidden structure in training data are extracted. It is experimentally shown that the optimal hyperparameters for two purposes are different from each other." @default.
- W2004228432 created "2016-06-24" @default.
- W2004228432 creator A5014635641 @default.
- W2004228432 creator A5089768991 @default.
- W2004228432 date "2011-05-01" @default.
- W2004228432 modified "2023-09-27" @default.
- W2004228432 title "Two design methods of hyperparameters in variational Bayes learning for Bernoulli mixtures" @default.
- W2004228432 cites W1497193185 @default.
- W2004228432 cites W1506806321 @default.
- W2004228432 cites W1507695701 @default.
- W2004228432 cites W1579271636 @default.
- W2004228432 cites W1608094059 @default.
- W2004228432 cites W1618600317 @default.
- W2004228432 cites W165370603 @default.
- W2004228432 cites W1663973292 @default.
- W2004228432 cites W1968908999 @default.
- W2004228432 cites W1976611840 @default.
- W2004228432 cites W1978304080 @default.
- W2004228432 cites W2001689396 @default.
- W2004228432 cites W2014927347 @default.
- W2004228432 cites W2047229728 @default.
- W2004228432 cites W2055505622 @default.
- W2004228432 cites W2099544373 @default.
- W2004228432 cites W2107455764 @default.
- W2004228432 cites W2115979064 @default.
- W2004228432 cites W2120217353 @default.
- W2004228432 cites W2171911691 @default.
- W2004228432 cites W2292751606 @default.
- W2004228432 cites W2554987453 @default.
- W2004228432 cites W3022903251 @default.
- W2004228432 doi "https://doi.org/10.1016/j.neucom.2010.06.027" @default.
- W2004228432 hasPublicationYear "2011" @default.
- W2004228432 type Work @default.
- W2004228432 sameAs 2004228432 @default.
- W2004228432 citedByCount "5" @default.
- W2004228432 countsByYear W20042284322012 @default.
- W2004228432 countsByYear W20042284322015 @default.
- W2004228432 countsByYear W20042284322020 @default.
- W2004228432 crossrefType "journal-article" @default.
- W2004228432 hasAuthorship W2004228432A5014635641 @default.
- W2004228432 hasAuthorship W2004228432A5089768991 @default.
- W2004228432 hasConcept C107673813 @default.
- W2004228432 hasConcept C119857082 @default.
- W2004228432 hasConcept C127413603 @default.
- W2004228432 hasConcept C146978453 @default.
- W2004228432 hasConcept C152361515 @default.
- W2004228432 hasConcept C154945302 @default.
- W2004228432 hasConcept C207201462 @default.
- W2004228432 hasConcept C28826006 @default.
- W2004228432 hasConcept C33923547 @default.
- W2004228432 hasConcept C41008148 @default.
- W2004228432 hasConcept C8642999 @default.
- W2004228432 hasConceptScore W2004228432C107673813 @default.
- W2004228432 hasConceptScore W2004228432C119857082 @default.
- W2004228432 hasConceptScore W2004228432C127413603 @default.
- W2004228432 hasConceptScore W2004228432C146978453 @default.
- W2004228432 hasConceptScore W2004228432C152361515 @default.
- W2004228432 hasConceptScore W2004228432C154945302 @default.
- W2004228432 hasConceptScore W2004228432C207201462 @default.
- W2004228432 hasConceptScore W2004228432C28826006 @default.
- W2004228432 hasConceptScore W2004228432C33923547 @default.
- W2004228432 hasConceptScore W2004228432C41008148 @default.
- W2004228432 hasConceptScore W2004228432C8642999 @default.
- W2004228432 hasIssue "11" @default.
- W2004228432 hasLocation W20042284321 @default.
- W2004228432 hasOpenAccess W2004228432 @default.
- W2004228432 hasPrimaryLocation W20042284321 @default.
- W2004228432 hasRelatedWork W2400323885 @default.
- W2004228432 hasRelatedWork W3199608561 @default.
- W2004228432 hasRelatedWork W4210794429 @default.
- W2004228432 hasRelatedWork W4223456145 @default.
- W2004228432 hasRelatedWork W4280535922 @default.
- W2004228432 hasRelatedWork W4283697347 @default.
- W2004228432 hasRelatedWork W4295309597 @default.
- W2004228432 hasRelatedWork W4304128395 @default.
- W2004228432 hasRelatedWork W4307195028 @default.
- W2004228432 hasRelatedWork W4309113015 @default.
- W2004228432 hasVolume "74" @default.
- W2004228432 isParatext "false" @default.
- W2004228432 isRetracted "false" @default.
- W2004228432 magId "2004228432" @default.
- W2004228432 workType "article" @default.