Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004261580> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2004261580 abstract "Parallel database systems and MapReduce systems (most notably Hadoop) are essential components of today’s infrastructure for Big Data analytics. These systems process multiple concurrent workloads consisting of complex user requests, where each request is associated with an (explicit or implicit) service level objective. For example, the workload of a particular user or application may have a higher priority than other workloads. Or a particular workload may have strict deadlines for the completion of its requests. The research area of Workload Management focuses on ensuring that the system meets the service level objectives of various requests while at the same time minimizing the resources required to achieve this goal. At a high level, workload management can be viewed as looking beyond the performance of an individual request to the performance of an entire workload consisting of multiple requests. Questions addressed by workload management research and technologies include: How to implement different priorities for different workloads? How to isolate the performance of one workload from the effect of other workloads? What is the best way to do request scheduling and admission control? What are good mechanisms and policies to control the allocation of resources to workloads statically and dynamically? How to define a workload and associated requests within that workload? How to monitor request performance, resource consumption, and data access patterns to ensure that workload management is effectively achieving its goals? How to ensure that workload management goals are met even in the presence of failures? This tutorial will discuss the fundamentals of workload management, and present tools and techniques for workload management in parallel databases and MapReduce. Workload management for parallel databases is an established topic, and most parallel database systems have sophisticated workload management tools. The tutorial will present some of these tools as case studies and discuss the underlying techniques that they use. Workload management for MapReduce is still a fledgling research area, and the tutorial will discuss recent advances in this area and future research directions. II. TUTORIAL OUTLINE" @default.
- W2004261580 created "2016-06-24" @default.
- W2004261580 creator A5000416532 @default.
- W2004261580 creator A5023095716 @default.
- W2004261580 date "2013-06-22" @default.
- W2004261580 modified "2023-09-29" @default.
- W2004261580 title "Workload management for big data analytics" @default.
- W2004261580 cites W2010149990 @default.
- W2004261580 cites W2011382740 @default.
- W2004261580 cites W2014376527 @default.
- W2004261580 cites W2022678927 @default.
- W2004261580 cites W2026965159 @default.
- W2004261580 cites W2068245803 @default.
- W2004261580 cites W2081728040 @default.
- W2004261580 cites W2088266288 @default.
- W2004261580 cites W2094154996 @default.
- W2004261580 cites W2096125134 @default.
- W2004261580 cites W2100773341 @default.
- W2004261580 cites W2102390718 @default.
- W2004261580 cites W2104993419 @default.
- W2004261580 cites W2111119607 @default.
- W2004261580 cites W2112013978 @default.
- W2004261580 cites W2113458201 @default.
- W2004261580 cites W2120451551 @default.
- W2004261580 cites W2131687207 @default.
- W2004261580 cites W2133617744 @default.
- W2004261580 cites W2162388481 @default.
- W2004261580 cites W2166239554 @default.
- W2004261580 cites W2167978511 @default.
- W2004261580 cites W2251728956 @default.
- W2004261580 cites W2294316975 @default.
- W2004261580 doi "https://doi.org/10.1145/2463676.2467801" @default.
- W2004261580 hasPublicationYear "2013" @default.
- W2004261580 type Work @default.
- W2004261580 sameAs 2004261580 @default.
- W2004261580 citedByCount "8" @default.
- W2004261580 countsByYear W20042615802014 @default.
- W2004261580 countsByYear W20042615802015 @default.
- W2004261580 countsByYear W20042615802018 @default.
- W2004261580 countsByYear W20042615802019 @default.
- W2004261580 crossrefType "proceedings-article" @default.
- W2004261580 hasAuthorship W2004261580A5000416532 @default.
- W2004261580 hasAuthorship W2004261580A5023095716 @default.
- W2004261580 hasConcept C111919701 @default.
- W2004261580 hasConcept C124101348 @default.
- W2004261580 hasConcept C175801342 @default.
- W2004261580 hasConcept C2522767166 @default.
- W2004261580 hasConcept C2778476105 @default.
- W2004261580 hasConcept C41008148 @default.
- W2004261580 hasConcept C75684735 @default.
- W2004261580 hasConcept C79158427 @default.
- W2004261580 hasConceptScore W2004261580C111919701 @default.
- W2004261580 hasConceptScore W2004261580C124101348 @default.
- W2004261580 hasConceptScore W2004261580C175801342 @default.
- W2004261580 hasConceptScore W2004261580C2522767166 @default.
- W2004261580 hasConceptScore W2004261580C2778476105 @default.
- W2004261580 hasConceptScore W2004261580C41008148 @default.
- W2004261580 hasConceptScore W2004261580C75684735 @default.
- W2004261580 hasConceptScore W2004261580C79158427 @default.
- W2004261580 hasLocation W20042615801 @default.
- W2004261580 hasOpenAccess W2004261580 @default.
- W2004261580 hasPrimaryLocation W20042615801 @default.
- W2004261580 hasRelatedWork W2337265393 @default.
- W2004261580 hasRelatedWork W2472976221 @default.
- W2004261580 hasRelatedWork W2508885301 @default.
- W2004261580 hasRelatedWork W2739436898 @default.
- W2004261580 hasRelatedWork W2777139086 @default.
- W2004261580 hasRelatedWork W2795096181 @default.
- W2004261580 hasRelatedWork W4245701730 @default.
- W2004261580 hasRelatedWork W4281396659 @default.
- W2004261580 hasRelatedWork W4288754811 @default.
- W2004261580 hasRelatedWork W2551093110 @default.
- W2004261580 isParatext "false" @default.
- W2004261580 isRetracted "false" @default.
- W2004261580 magId "2004261580" @default.
- W2004261580 workType "article" @default.