Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004277622> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2004277622 endingPage "504" @default.
- W2004277622 startingPage "491" @default.
- W2004277622 abstract "A function <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper V> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>V</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {V}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is defined on the set of all subsets of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=omega> <mml:semantics> <mml:mi>ω<!-- ω --></mml:mi> <mml:annotation encoding=application/x-tex>omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> so that for each set <italic>K</italic>, the value, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper V Subscript upper K> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>V</mml:mi> </mml:mrow> <mml:mi>K</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{mathcal {V}_K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is the set of formulas valid in all structures of cardinality in <italic>K</italic>. An analysis is made of the dependence of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper V Subscript upper K> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>V</mml:mi> </mml:mrow> <mml:mi>K</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{mathcal {V}_K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <italic>K</italic>, For any set <bold>K</bold>, let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d left-parenthesis upper K right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>d</mml:mtext> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{text {d}}(K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the Kleene-Post degree to which <italic>K</italic> belongs. It is easily seen that for all infinite sets <italic>K</italic>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d left-parenthesis upper K right-parenthesis logical-or 1 less-than-or-equal-to d left-parenthesis script upper V Subscript upper K Baseline right-parenthesis less-than-or-equal-to d left-parenthesis upper K right-parenthesis prime> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>d</mml:mtext> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>∨<!-- ∨ --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>d</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>V</mml:mi> </mml:mrow> <mml:mi>K</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>d</mml:mtext> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>K</mml:mi> <mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mo>′</mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{text {d}}(K) vee 1 leq d({mathcal {V}_K}) leq {text {d}}(K)’</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. On the other hand, we prove that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d left-parenthesis script upper V Subscript upper K logical-or upper J Baseline right-parenthesis equals d left-parenthesis script upper V Subscript upper K Baseline right-parenthesis logical-or d left-parenthesis script upper V Subscript upper J Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>d</mml:mtext> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>V</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>K</mml:mi> <mml:mo>∨<!-- ∨ --></mml:mo> <mml:mi>J</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>d</mml:mtext> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>V</mml:mi> </mml:mrow> <mml:mi>K</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> <mml:mo>∨<!-- ∨ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>d</mml:mtext> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>V</mml:mi> </mml:mrow> <mml:mi>J</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{text {d}}({mathcal {V}_{K vee J}}) = {text {d}}({mathcal {V}_K}) vee {text {d}}({mathcal {V}_J})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and use this to prove that, for any two degrees a and b, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=a greater-than-or-equal-to 1 comma a less-than-or-equal-to b less-than-or-equal-to a prime> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>a</mml:mtext> </mml:mrow> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>a</mml:mtext> </mml:mrow> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>b</mml:mtext> </mml:mrow> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>a</mml:mtext> </mml:mrow> <mml:mo>′</mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{text {a}} geq 1,{text {a}} leq {text {b}} leq {text {a}}’</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and b r.e. a, there exists a set <italic>K</italic> so that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d left-parenthesis upper K right-parenthesis equals a> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>d</mml:mtext> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>a</mml:mtext> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>{text {d}}(K) = {text {a}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d left-parenthesis script upper V Subscript upper K Baseline right-parenthesis equals b> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>d</mml:mtext> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>V</mml:mi> </mml:mrow> <mml:mi>K</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>b</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>{text {d}}({mathcal {V}_K}) = b</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Various similar results are also included." @default.
- W2004277622 created "2016-06-24" @default.
- W2004277622 creator A5051370311 @default.
- W2004277622 date "1973-01-01" @default.
- W2004277622 modified "2023-10-16" @default.
- W2004277622 title "Sets of formulas valid in finite structures" @default.
- W2004277622 cites W2043071947 @default.
- W2004277622 cites W2057392475 @default.
- W2004277622 cites W2060075008 @default.
- W2004277622 cites W2090983410 @default.
- W2004277622 doi "https://doi.org/10.1090/s0002-9947-1973-0319730-3" @default.
- W2004277622 hasPublicationYear "1973" @default.
- W2004277622 type Work @default.
- W2004277622 sameAs 2004277622 @default.
- W2004277622 citedByCount "2" @default.
- W2004277622 crossrefType "journal-article" @default.
- W2004277622 hasAuthorship W2004277622A5051370311 @default.
- W2004277622 hasBestOaLocation W20042776221 @default.
- W2004277622 hasConcept C11413529 @default.
- W2004277622 hasConcept C154945302 @default.
- W2004277622 hasConcept C18903297 @default.
- W2004277622 hasConcept C2776321320 @default.
- W2004277622 hasConcept C2777299769 @default.
- W2004277622 hasConcept C33923547 @default.
- W2004277622 hasConcept C41008148 @default.
- W2004277622 hasConcept C86803240 @default.
- W2004277622 hasConceptScore W2004277622C11413529 @default.
- W2004277622 hasConceptScore W2004277622C154945302 @default.
- W2004277622 hasConceptScore W2004277622C18903297 @default.
- W2004277622 hasConceptScore W2004277622C2776321320 @default.
- W2004277622 hasConceptScore W2004277622C2777299769 @default.
- W2004277622 hasConceptScore W2004277622C33923547 @default.
- W2004277622 hasConceptScore W2004277622C41008148 @default.
- W2004277622 hasConceptScore W2004277622C86803240 @default.
- W2004277622 hasIssue "0" @default.
- W2004277622 hasLocation W20042776221 @default.
- W2004277622 hasOpenAccess W2004277622 @default.
- W2004277622 hasPrimaryLocation W20042776221 @default.
- W2004277622 hasRelatedWork W1529400504 @default.
- W2004277622 hasRelatedWork W1892467659 @default.
- W2004277622 hasRelatedWork W2045715842 @default.
- W2004277622 hasRelatedWork W2105880240 @default.
- W2004277622 hasRelatedWork W2349865494 @default.
- W2004277622 hasRelatedWork W2372553222 @default.
- W2004277622 hasRelatedWork W2808586768 @default.
- W2004277622 hasRelatedWork W2925832130 @default.
- W2004277622 hasRelatedWork W2998403542 @default.
- W2004277622 hasRelatedWork W3157620392 @default.
- W2004277622 hasVolume "177" @default.
- W2004277622 isParatext "false" @default.
- W2004277622 isRetracted "false" @default.
- W2004277622 magId "2004277622" @default.
- W2004277622 workType "article" @default.