Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004304181> ?p ?o ?g. }
- W2004304181 endingPage "181" @default.
- W2004304181 startingPage "171" @default.
- W2004304181 abstract "Housed within the 11-stranded β-barrel of the green fluorescent protein (GFP) is the arylideneimidazolidinone (AMI) chromophore, the component responsible for fluorescence. This class of small-molecule chromophore has drawn significant attention for its remarkable photophysical and photochemical properties, both within the intact protein and after its denaturation. All of the proteins so far isolated that have visible light fluorescence have been found to contain an AMI chromophore. These proteins comprise an extensive rainbow, ranging from GFP, which contains the simplest chromophore, p-hydroxybenzylideneimidazolidinone (p-HOBDI), to proteins having molecules with longer conjugation lengths and a variety of intraprotein interactions. The fluorescence invariably almost vanishes upon removal of the protective β-barrel. The role of the barrel in hindering internal conversion has been the subject of numerous studies, especially in our laboratories and those of our collaborators. A better understanding of these chromophores has been facilitated by the development of numerous synthetic protocols. These syntheses, which commonly use the Erlenmeyer azlactone method, have evolved in recent years with the development of a [2 + 3] cycloaddition exploited in our laboratory. The synthetic AMI chromophores have allowed delineation of the complex photophysics of GFP and its derivatives. Upon denaturation, AMI chromophores are marked by 4 orders of magnitude of diminution in emission quantum yield (EQY). This result is attributed to internal conversion resulting from conformational freedom in the released chromophore, which is not allowed within the restrictive β-barrel. To date, the photophysical properties of the AMI chromophore remain elusive and have been attributed to a variety of mechanisms, including cis-trans isomerization, triplet formation, hula twisting, and proton transfer. Advanced studies involving gas-phase behavior, solvent effects, and protonation states have significantly increased our understanding of the chromophore photophysics, but a comprehensive picture is only slowly emerging. Most importantly, mechanisms in structurally defined chromophores may provide clues as to the origin of the blinking behavior of the fluorescent proteins themselves. One approach to examining the effect of conformational freedom on rapid internal conversion of the chromophores is to restrict the molecules, both through structural modifications and through adjustments of the supramolecular systems. We thus include here a discussion of studies involving the crystalline state, inclusion within natural protein-binding pockets, complexation with metal ions, and sequestration within synthetic cavities; all of this research affirms the role of restricting conformational freedom in partially restoring the EQY. Additionally, new photochemistry is observed within these restricted systems. Many of the studies carried out in our laboratories show promise for these molecules to be adapted as molecular probes, wherein inclusion turns on the fluorescence and provides a signaling mechanism. In this Account, we present an overview of the AMI chromophores, including synthesis, overall photophysics, and supramolecular behavior. A significant amount of work remains for researchers to fully understand the properties of these chromophores, but important progress achieved thus far in photophysics and photochemistry is underscored here." @default.
- W2004304181 created "2016-06-24" @default.
- W2004304181 creator A5027096922 @default.
- W2004304181 creator A5066947398 @default.
- W2004304181 creator A5073522082 @default.
- W2004304181 creator A5086974830 @default.
- W2004304181 date "2011-08-24" @default.
- W2004304181 modified "2023-09-29" @default.
- W2004304181 title "Collapse and Recovery of Green Fluorescent Protein Chromophore Emission through Topological Effects" @default.
- W2004304181 cites W1657499324 @default.
- W2004304181 cites W1964612599 @default.
- W2004304181 cites W1965804266 @default.
- W2004304181 cites W1971493096 @default.
- W2004304181 cites W1971880438 @default.
- W2004304181 cites W1973547532 @default.
- W2004304181 cites W1976135176 @default.
- W2004304181 cites W1993647922 @default.
- W2004304181 cites W1999923843 @default.
- W2004304181 cites W2000837237 @default.
- W2004304181 cites W2003646393 @default.
- W2004304181 cites W2004248055 @default.
- W2004304181 cites W2006128986 @default.
- W2004304181 cites W2007345684 @default.
- W2004304181 cites W2008900126 @default.
- W2004304181 cites W2010204630 @default.
- W2004304181 cites W2010772236 @default.
- W2004304181 cites W2013159259 @default.
- W2004304181 cites W2014245863 @default.
- W2004304181 cites W2015835861 @default.
- W2004304181 cites W2018052373 @default.
- W2004304181 cites W2024708633 @default.
- W2004304181 cites W2025453705 @default.
- W2004304181 cites W2027393016 @default.
- W2004304181 cites W2030239671 @default.
- W2004304181 cites W2030695915 @default.
- W2004304181 cites W2035493720 @default.
- W2004304181 cites W2037132030 @default.
- W2004304181 cites W2040403303 @default.
- W2004304181 cites W2041822761 @default.
- W2004304181 cites W2043574296 @default.
- W2004304181 cites W2046423648 @default.
- W2004304181 cites W2047441698 @default.
- W2004304181 cites W2047883664 @default.
- W2004304181 cites W2057003691 @default.
- W2004304181 cites W2061104342 @default.
- W2004304181 cites W2061831940 @default.
- W2004304181 cites W2063123887 @default.
- W2004304181 cites W2066048196 @default.
- W2004304181 cites W2068641628 @default.
- W2004304181 cites W2069949648 @default.
- W2004304181 cites W2073464189 @default.
- W2004304181 cites W2080548445 @default.
- W2004304181 cites W2082035619 @default.
- W2004304181 cites W2083937799 @default.
- W2004304181 cites W2085959090 @default.
- W2004304181 cites W2086326092 @default.
- W2004304181 cites W2093734859 @default.
- W2004304181 cites W2094817647 @default.
- W2004304181 cites W2095093289 @default.
- W2004304181 cites W2096691349 @default.
- W2004304181 cites W2106518073 @default.
- W2004304181 cites W2111518741 @default.
- W2004304181 cites W2113746460 @default.
- W2004304181 cites W2115164588 @default.
- W2004304181 cites W2116527096 @default.
- W2004304181 cites W2122881260 @default.
- W2004304181 cites W2127068865 @default.
- W2004304181 cites W2129126460 @default.
- W2004304181 cites W2135950191 @default.
- W2004304181 cites W2146977191 @default.
- W2004304181 cites W2151228364 @default.
- W2004304181 cites W2161996750 @default.
- W2004304181 cites W2167966848 @default.
- W2004304181 cites W2335154540 @default.
- W2004304181 cites W2486191832 @default.
- W2004304181 cites W2950713969 @default.
- W2004304181 cites W2951458059 @default.
- W2004304181 cites W2952934043 @default.
- W2004304181 doi "https://doi.org/10.1021/ar2000925" @default.
- W2004304181 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21861536" @default.
- W2004304181 hasPublicationYear "2011" @default.
- W2004304181 type Work @default.
- W2004304181 sameAs 2004304181 @default.
- W2004304181 citedByCount "105" @default.
- W2004304181 countsByYear W20043041812012 @default.
- W2004304181 countsByYear W20043041812013 @default.
- W2004304181 countsByYear W20043041812014 @default.
- W2004304181 countsByYear W20043041812015 @default.
- W2004304181 countsByYear W20043041812016 @default.
- W2004304181 countsByYear W20043041812017 @default.
- W2004304181 countsByYear W20043041812018 @default.
- W2004304181 countsByYear W20043041812019 @default.
- W2004304181 countsByYear W20043041812020 @default.
- W2004304181 countsByYear W20043041812021 @default.
- W2004304181 countsByYear W20043041812022 @default.
- W2004304181 countsByYear W20043041812023 @default.
- W2004304181 crossrefType "journal-article" @default.
- W2004304181 hasAuthorship W2004304181A5027096922 @default.