Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004353783> ?p ?o ?g. }
- W2004353783 endingPage "197" @default.
- W2004353783 startingPage "187" @default.
- W2004353783 abstract "Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability." @default.
- W2004353783 created "2016-06-24" @default.
- W2004353783 creator A5012268687 @default.
- W2004353783 creator A5020760956 @default.
- W2004353783 creator A5045699018 @default.
- W2004353783 creator A5058499857 @default.
- W2004353783 creator A5086740564 @default.
- W2004353783 date "2015-05-01" @default.
- W2004353783 modified "2023-10-18" @default.
- W2004353783 title "Long short-term memory neural network for traffic speed prediction using remote microwave sensor data" @default.
- W2004353783 cites W1544613517 @default.
- W2004353783 cites W1577395830 @default.
- W2004353783 cites W1931516414 @default.
- W2004353783 cites W1964357740 @default.
- W2004353783 cites W1965127965 @default.
- W2004353783 cites W1967444754 @default.
- W2004353783 cites W1971757341 @default.
- W2004353783 cites W1973943669 @default.
- W2004353783 cites W1988489815 @default.
- W2004353783 cites W1991694886 @default.
- W2004353783 cites W1998210776 @default.
- W2004353783 cites W2004073866 @default.
- W2004353783 cites W2004831545 @default.
- W2004353783 cites W2007317905 @default.
- W2004353783 cites W2008483594 @default.
- W2004353783 cites W2008925288 @default.
- W2004353783 cites W2014843617 @default.
- W2004353783 cites W2018089617 @default.
- W2004353783 cites W2019836907 @default.
- W2004353783 cites W2029050814 @default.
- W2004353783 cites W2036848256 @default.
- W2004353783 cites W2040297119 @default.
- W2004353783 cites W2041567331 @default.
- W2004353783 cites W2043530786 @default.
- W2004353783 cites W2043756604 @default.
- W2004353783 cites W2045420802 @default.
- W2004353783 cites W2047121359 @default.
- W2004353783 cites W2057918527 @default.
- W2004353783 cites W2061062671 @default.
- W2004353783 cites W2063317055 @default.
- W2004353783 cites W2064675550 @default.
- W2004353783 cites W2075712443 @default.
- W2004353783 cites W2076077609 @default.
- W2004353783 cites W2076147814 @default.
- W2004353783 cites W2082533141 @default.
- W2004353783 cites W2085592822 @default.
- W2004353783 cites W2090192376 @default.
- W2004353783 cites W2105967997 @default.
- W2004353783 cites W2109177467 @default.
- W2004353783 cites W2111991989 @default.
- W2004353783 cites W2116261113 @default.
- W2004353783 cites W2120054128 @default.
- W2004353783 cites W2143242061 @default.
- W2004353783 cites W2144623333 @default.
- W2004353783 cites W2150010190 @default.
- W2004353783 cites W2156705969 @default.
- W2004353783 cites W2156948728 @default.
- W2004353783 cites W2160507653 @default.
- W2004353783 cites W2165137963 @default.
- W2004353783 cites W2168332608 @default.
- W2004353783 cites W2169424991 @default.
- W2004353783 doi "https://doi.org/10.1016/j.trc.2015.03.014" @default.
- W2004353783 hasPublicationYear "2015" @default.
- W2004353783 type Work @default.
- W2004353783 sameAs 2004353783 @default.
- W2004353783 citedByCount "1389" @default.
- W2004353783 countsByYear W20043537832015 @default.
- W2004353783 countsByYear W20043537832016 @default.
- W2004353783 countsByYear W20043537832017 @default.
- W2004353783 countsByYear W20043537832018 @default.
- W2004353783 countsByYear W20043537832019 @default.
- W2004353783 countsByYear W20043537832020 @default.
- W2004353783 countsByYear W20043537832021 @default.
- W2004353783 countsByYear W20043537832022 @default.
- W2004353783 countsByYear W20043537832023 @default.
- W2004353783 crossrefType "journal-article" @default.
- W2004353783 hasAuthorship W2004353783A5012268687 @default.
- W2004353783 hasAuthorship W2004353783A5020760956 @default.
- W2004353783 hasAuthorship W2004353783A5045699018 @default.
- W2004353783 hasAuthorship W2004353783A5058499857 @default.
- W2004353783 hasAuthorship W2004353783A5086740564 @default.
- W2004353783 hasConcept C105795698 @default.
- W2004353783 hasConcept C117251300 @default.
- W2004353783 hasConcept C119857082 @default.
- W2004353783 hasConcept C121332964 @default.
- W2004353783 hasConcept C147168706 @default.
- W2004353783 hasConcept C151406439 @default.
- W2004353783 hasConcept C154945302 @default.
- W2004353783 hasConcept C175202392 @default.
- W2004353783 hasConcept C19768560 @default.
- W2004353783 hasConcept C33923547 @default.
- W2004353783 hasConcept C41008148 @default.
- W2004353783 hasConcept C50644808 @default.
- W2004353783 hasConcept C61797465 @default.
- W2004353783 hasConcept C62520636 @default.
- W2004353783 hasConceptScore W2004353783C105795698 @default.
- W2004353783 hasConceptScore W2004353783C117251300 @default.
- W2004353783 hasConceptScore W2004353783C119857082 @default.