Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004361475> ?p ?o ?g. }
- W2004361475 endingPage "2634" @default.
- W2004361475 startingPage "2631" @default.
- W2004361475 abstract "palmoplantar keratoderma TO THE EDITOR Palmoplantar keratodermas (PPKs) are a group of rare keratinization disorders characterized by the excessive formation of keratin on the palms and soles. Four clinical types of PPK can be classified by the pattern of lesions: diffuse, punctuate, focal, and striate (Stevens et al., 1996Stevens H.P. Kelsell D.P. Leigh I.M. et al.Punctate palmoplantar keratoderma and malignancy in a four-generation family.Br J Dermatol. 1996; 134: 720-726Crossref PubMed Scopus (47) Google Scholar). Punctate palmoplantar keratoderma type I (PPKP1, MIM number 148,600) is an autosomal dominant inherited subtype of PPK characterized by multiple tiny punctate keratoses on the palms and soles, which can gradually increase in diameter with age and even coalesce (Figure 1a and b). The incidence of this disease was reported as 1.17 per 100,000 population in Croatia and 3.3 per 100,000 population in Slovenia (Guo et al., 2012Guo B.R. Zhang X. Chen G. et al.Exome sequencing identifies a COL14A1 mutation in a large Chinese pedigree with punctate palmoplantar keratoderma.J Med Genet. 2012; 49: 563-568Crossref PubMed Scopus (26) Google Scholar). Two linkage loci for PPKP1 (8q24.13–8q24.21, 15q22.2–15q24.1) have been reported previously (Martinez-Mir et al., 2003Martinez-Mir A. Zlotogorski A. Londono D. et al.Identification of a locus for type I punctate palmoplantar keratoderma on chromosome 15q22-q24.J Med Genet. 2003; 40: 872-878Crossref PubMed Scopus (31) Google Scholar; Zhang et al., 2004Zhang X.J. Li M. Gao T.W. et al.Identification of a locus for punctate palmoplantar keratodermas at chromosome 8q24.13-8q24.21.J Invest Dermatol. 2004; 122: 1121-1125Abstract Full Text Full Text PDF PubMed Scopus (21) Google Scholar; Gao et al., 2005Gao M. Yang S. Li M. et al.Refined localization of a punctate palmoplantar keratoderma gene to a 5.06-cM region at 15q22.2-15q22.31.Br J Dermatol. 2005; 152: 874-878Crossref PubMed Scopus (27) Google Scholar; El Amri et al., 2010El Amri I. Mamai O. Ghariani N. et al.Clinical and genetic characteristics of Buschke-Fischer-Brauer’s disease in a Tunisian family.Ann Dermatol Venereol. 2010; 137: 269-275Crossref PubMed Scopus (8) Google Scholar; Mamai et al., 2012Mamai O. Boussofara L. Adala L. et al.Reduction of palmoplantar keratoderma Buschke-Fischer-Brauer locus to only 0.967 Mb.J Dermatol Sci. 2012; 67: 210-212Abstract Full Text Full Text PDF PubMed Scopus (5) Google Scholar). In recent years, the success of exome sequencing has been well established in the identification of novel causal mutations for Mendelian diseases (Ku et al., 2012Ku C.S. Cooper D.N. Polychronakos C. et al.Exome sequencing: dual role as a discovery and diagnostic tool.Ann Neurol. 2012; 71: 5-14Crossref PubMed Scopus (136) Google Scholar). Here, we subjected two DNA sequences (III8 and III9) from the Chinese PPKP1 family linked to 15q22 (Family 22) to exome sequencing. Informed consent was obtained from all the sequenced participants. This study was authorized by the Ethics Committee of Anhui Medical University and was conducted in accordance with the Declaration of Helsinki Principles. Exome capture and enrichment were performed using the Agilent SureSelect Human All Exon Kit (in solution; Santa Clara, CA) according to the manufacturer’s protocols. Exome sequencing was then performed on a HiSeq 2000 platform (Illumina, San Diego, CA), and sequence data were processed to raw sequence reads. These reads were aligned to a human reference genome (NCBI build 37.3, hg19), and the analytical pipeline was then followed by SOAPsnp (Li et al., 2009Li R. Li Y. Fang X. et al.SNP detection for massively parallel whole-genome resequencing.Genome Res. 2009; 19: 1124-1132Crossref PubMed Scopus (768) Google Scholar). Finally, the variants were annotated to obtain information such as genomic position and functional effect. On average, two sequences were obtained from each individual at ∼50-fold coverage depth. We obtained 4.51 billion bases of sequence data as paired-end, 90-bp reads. After discarding reads that had a duplicated start site, 2.69 billion bases of mappable targeted exome were defined by RefSeq genes. An average of 89.2% of the exome was covered at least ∼10-fold, and 51,819 variants were identified per individual. We primarily focused on coding variants, including non-synonymous variants, splice-site variants, and insertions/deletions, of which there were an average of 11,362. We filtered the variants against dbSNP129, eight HapMap individuals, the 1,000 Genomes Project, the YH database, and unaffected individual, and reduced the number of candidate variants to 527. We then used SIFT to predict the functional impact and determine the 261 variants that were the most likely to be damaging. Finally, we found that five mutations in five genes (DAPK2, IGDCC4, RPL4, TPM1, and AAGAB) were located on 15q22.2–15q24.1. Among the five genes, mutations in AAGAB have recently been identified in PPKP1 in two publications (Giehl et al., 2012Giehl K.A. Eckstein G.N. Pasternack S.M. et al.Nonsense mutations in AAGAB cause punctate palmoplantar keratoderma type Buschke-Fischer-Brauer.Am J Hum Genet. 2012; 91: 754-759Abstract Full Text Full Text PDF PubMed Scopus (49) Google Scholar; Pohler et al., 2012Pohler E. Mamai O. Hirst J. et al.Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma.Nat Genet. 2012; 44: 1272-1276Crossref PubMed Scopus (60) Google Scholar). We tested all the samples and identified the c.552_554TAG>AT mutation in exon 6 of AAGAB as the causative mutation in Family 22 (Figure 1c and d). This mutation resulted in a stop codon at amino acid position 188 (p.Phe184 Leufs* 6). We then sequenced all the exons and exon–intron boundaries of AAGAB in 59 individuals from an additional seven families (Families 23–29) and 28 sporadic patients (Sporadic patients 1–28) with PPKP1 (Supplementary Figure S1 online). Finally, four truncated mutations in four respective families and a splice-site mutation in one sporadic case were identified (Supplementary Figure S2 online). The AAGAB gene mutations were absent in three other PPKP1 families (Families 27–29) and 27 sporadic patients (Sporadic patients 2–28). In addition, we identified the c.481C>T mutation in exon 5 in one patient with cancer from Family 24, whereas none of three sporadic patients with cancer carried mutations. There appeared to be no genetic link between AAGAB mutations and cancer. Download .pdf (.4 MB) Help with pdf files Supplementary Material To date, fourteen mutations in AAGAB have been identified in PPKP1 patients with different ancestries, including Scottish, Irish, Japanese, Tunisian, Croatian, German, and Chinese origins (Giehl et al., 2012Giehl K.A. Eckstein G.N. Pasternack S.M. et al.Nonsense mutations in AAGAB cause punctate palmoplantar keratoderma type Buschke-Fischer-Brauer.Am J Hum Genet. 2012; 91: 754-759Abstract Full Text Full Text PDF PubMed Scopus (49) Google Scholar; Pohler et al., 2012Pohler E. Mamai O. Hirst J. et al.Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma.Nat Genet. 2012; 44: 1272-1276Crossref PubMed Scopus (60) Google Scholar). Table 1 lists all mutation types and the categorized domain proteins. The positions of protein alterations are shown (Supplementary Figure S3 online). These data further indicate that AAGAB is a major genetic factor in PPKP1.Table 1The summary of mutations in AAGAB gene from the literature and our studyFamily and sporadic patient IDDNA mutationPositionMutation typeProtein domain localizationAncestryReferenceFamilies 1–5c.473del (p.Gly158Glufs*0)Exon 5FrameshiftIntervalScottishPohler et al., 2012Pohler E. Mamai O. Hirst J. et al.Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma.Nat Genet. 2012; 44: 1272-1276Crossref PubMed Scopus (60) Google ScholarFamilies 6 and 7c.344del (p.Asp115Valfs*7)Exon 3FrameshiftRab-like GTPase domainScottishPohler et al., 2012Pohler E. Mamai O. Hirst J. et al.Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma.Nat Genet. 2012; 44: 1272-1276Crossref PubMed Scopus (60) Google ScholarFamilies 8–10, 24c.481C>T (p.Arg161*)Exon 5NonsenseAdaptin-binding domainScottish, Croatian, and ChineseGiehl et al., 2012Giehl K.A. Eckstein G.N. Pasternack S.M. et al.Nonsense mutations in AAGAB cause punctate palmoplantar keratoderma type Buschke-Fischer-Brauer.Am J Hum Genet. 2012; 91: 754-759Abstract Full Text Full Text PDF PubMed Scopus (49) Google Scholar; Pohler et al., 2012Pohler E. Mamai O. Hirst J. et al.Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma.Nat Genet. 2012; 44: 1272-1276Crossref PubMed Scopus (60) Google ScholarFamilies 11 and12c.870+1G>A (p.?)Intron 9Splice acceptorAdaptin-binding domainScottishPohler et al., 2012Pohler E. Mamai O. Hirst J. et al.Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma.Nat Genet. 2012; 44: 1272-1276Crossref PubMed Scopus (60) Google ScholarFamilies 13 and 14c.140G>A (p.Trp47Ter)Exon 2NonsenseIntervalScottish and IrishPohler et al., 2012Pohler E. Mamai O. Hirst J. et al.Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma.Nat Genet. 2012; 44: 1272-1276Crossref PubMed Scopus (60) Google ScholarFamilies 15 and 16c.200_203del (p.Phe67Leufs*41)Exon 2FrameshiftIntervalJapanesePohler et al., 2012Pohler E. Mamai O. Hirst J. et al.Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma.Nat Genet. 2012; 44: 1272-1276Crossref PubMed Scopus (60) Google ScholarFamilies 17–19c.348_349del (p.Arg116Serfs*1)Exon 3FrameshiftRab-like GTPase domainTunisianPohler et al., 2012Pohler E. Mamai O. Hirst J. et al.Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma.Nat Genet. 2012; 44: 1272-1276Crossref PubMed Scopus (60) Google ScholarFamily 20c.2del (p.0?)Exon 1FrameshiftIntervalScottishPohler et al., 2012Pohler E. Mamai O. Hirst J. et al.Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma.Nat Genet. 2012; 44: 1272-1276Crossref PubMed Scopus (60) Google ScholarFamily 21c.370C >T (p.Arg124*)Exon 4NonsenseRab-like GTPase domainGermanGiehl et al., 2012Giehl K.A. Eckstein G.N. Pasternack S.M. et al.Nonsense mutations in AAGAB cause punctate palmoplantar keratoderma type Buschke-Fischer-Brauer.Am J Hum Genet. 2012; 91: 754-759Abstract Full Text Full Text PDF PubMed Scopus (49) Google ScholarFamily 22c.552_554TAG>AT (p.Phe184Leufs*6)Exon 6FrameshiftAdaptin-binding domainChineseIn this studyFamily 23c.352_355delTCTG (p.Ser118Lysfs*3)Exon 3FrameshiftRab-like GTPase domainChineseIn this studyFamily 25c.755_756insAAGCCAGTCT (p.Leu252Leufs*14)Exon 8FrameshiftAdaptin-binding domainChineseIn this studyFamily 26c.725T>G (p.Leu242*)Exon 8NonsenseAdaptin-binding domainChineseIn this studySporadic patient 1C.535+1G>A (p.?)Intron 6Splice acceptorAdaptin-binding domainChineseIn this study Open table in a new tab AAGAB encodes α- and γ-adaptin-binding protein p34, which contains 315 amino acids. An immunolocalization study revealed that p34 usually acts as a ligand for the NH2-terminal domains of α-adaptin and γ-adaptin. These two adaptins are present in two types of soluble adaptor complexes, AP-1 and AP-2. p34 can colocalize with cytosolic AP-1/AP-2 to help recruit soluble adaptors to membranes (Page et al., 1999Page L.J. Sowerby P.J. Lui W.W. et al.Gamma-synergin: an EH domain-containing protein that interacts with gamma-adaptin.J Cell Biol. 1999; 146: 993-1004Crossref PubMed Scopus (122) Google Scholar). In addition, AP-2 acts as a ligand for the EGFR, which has been implicated in entry into the endosomal system (Rappoport and Simon, 2009Rappoport J.Z. Simon S.M. Endocytic trafficking of activated EGFR is AP-2 dependent and occurs through preformed clathrin spots.J Cell Sci. 2009; 122: 1301-1305Crossref PubMed Scopus (86) Google Scholar). Studies have revealed that AAGAB knockdown in HaCaT cells increases active EGFR signaling by >20-fold and that p34 deficiency inhibits binding with cytosolic AP-2, decreases EGFR protein turnover, and recycles the receptor to the cell surface (Pohler et al., 2012Pohler E. Mamai O. Hirst J. et al.Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma.Nat Genet. 2012; 44: 1272-1276Crossref PubMed Scopus (60) Google Scholar). EGFR appears to be closely associated with p34 to balance the normal endocytic recycling of receptor tyrosine kinases, which have been implicated in the regulation of cell proliferation. In the current study, we identified six mutations in the AAGAB gene in Chinese PPKP1 patients. However, the gene collectively accounts for only a fraction of cases. Other genes carrying mutations will be identified in the unresolved patients. As the widespread and cost-effective use of exome sequencing increases, it is proving to be a powerful strategy for identifying specific mutations in individuals. We are most grateful to all the patients with PPK and their family members for participating in this study. This study was supported by the National Natural Science Foundation of China (grant nos. 31100907 and 31171223), Program for New Century Excellent Talents in University (NCET-11-0889), Science and Technological Foundation of Anhui Province for Outstanding Youth (1108085J10) and Pre-project of State Key Basic Research Program 973 of China (no. 2012CB722404), and the Ministry of Education of China (IRT-1046). Supplementary material is linked to the online version of the paper at http://www.nature.com/jid" @default.
- W2004361475 created "2016-06-24" @default.
- W2004361475 creator A5001699296 @default.
- W2004361475 creator A5004007636 @default.
- W2004361475 creator A5007265276 @default.
- W2004361475 creator A5012286480 @default.
- W2004361475 creator A5012436877 @default.
- W2004361475 creator A5025851882 @default.
- W2004361475 creator A5027598154 @default.
- W2004361475 creator A5028449710 @default.
- W2004361475 creator A5033970651 @default.
- W2004361475 creator A5035764943 @default.
- W2004361475 creator A5042241049 @default.
- W2004361475 creator A5045067652 @default.
- W2004361475 creator A5046978138 @default.
- W2004361475 creator A5047013876 @default.
- W2004361475 creator A5049703242 @default.
- W2004361475 creator A5053204257 @default.
- W2004361475 creator A5057684581 @default.
- W2004361475 creator A5058503649 @default.
- W2004361475 creator A5064660745 @default.
- W2004361475 creator A5064971821 @default.
- W2004361475 creator A5081184606 @default.
- W2004361475 creator A5088616206 @default.
- W2004361475 creator A5090069208 @default.
- W2004361475 date "2013-11-01" @default.
- W2004361475 modified "2023-10-13" @default.
- W2004361475 title "Six Mutations in AAGAB Confirm Its Pathogenic Role in Chinese Punctate Palmoplantar Keratoderma Patients" @default.
- W2004361475 cites W1945651496 @default.
- W2004361475 cites W1968616658 @default.
- W2004361475 cites W2010821542 @default.
- W2004361475 cites W2011558883 @default.
- W2004361475 cites W2018584963 @default.
- W2004361475 cites W2043109514 @default.
- W2004361475 cites W2043674513 @default.
- W2004361475 cites W2107298999 @default.
- W2004361475 cites W2124960286 @default.
- W2004361475 cites W2128427994 @default.
- W2004361475 cites W2138641998 @default.
- W2004361475 cites W4238387255 @default.
- W2004361475 doi "https://doi.org/10.1038/jid.2013.198" @default.
- W2004361475 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23633024" @default.
- W2004361475 hasPublicationYear "2013" @default.
- W2004361475 type Work @default.
- W2004361475 sameAs 2004361475 @default.
- W2004361475 citedByCount "10" @default.
- W2004361475 countsByYear W20043614752014 @default.
- W2004361475 countsByYear W20043614752015 @default.
- W2004361475 countsByYear W20043614752016 @default.
- W2004361475 countsByYear W20043614752017 @default.
- W2004361475 countsByYear W20043614752019 @default.
- W2004361475 countsByYear W20043614752021 @default.
- W2004361475 countsByYear W20043614752023 @default.
- W2004361475 crossrefType "journal-article" @default.
- W2004361475 hasAuthorship W2004361475A5001699296 @default.
- W2004361475 hasAuthorship W2004361475A5004007636 @default.
- W2004361475 hasAuthorship W2004361475A5007265276 @default.
- W2004361475 hasAuthorship W2004361475A5012286480 @default.
- W2004361475 hasAuthorship W2004361475A5012436877 @default.
- W2004361475 hasAuthorship W2004361475A5025851882 @default.
- W2004361475 hasAuthorship W2004361475A5027598154 @default.
- W2004361475 hasAuthorship W2004361475A5028449710 @default.
- W2004361475 hasAuthorship W2004361475A5033970651 @default.
- W2004361475 hasAuthorship W2004361475A5035764943 @default.
- W2004361475 hasAuthorship W2004361475A5042241049 @default.
- W2004361475 hasAuthorship W2004361475A5045067652 @default.
- W2004361475 hasAuthorship W2004361475A5046978138 @default.
- W2004361475 hasAuthorship W2004361475A5047013876 @default.
- W2004361475 hasAuthorship W2004361475A5049703242 @default.
- W2004361475 hasAuthorship W2004361475A5053204257 @default.
- W2004361475 hasAuthorship W2004361475A5057684581 @default.
- W2004361475 hasAuthorship W2004361475A5058503649 @default.
- W2004361475 hasAuthorship W2004361475A5064660745 @default.
- W2004361475 hasAuthorship W2004361475A5064971821 @default.
- W2004361475 hasAuthorship W2004361475A5081184606 @default.
- W2004361475 hasAuthorship W2004361475A5088616206 @default.
- W2004361475 hasAuthorship W2004361475A5090069208 @default.
- W2004361475 hasBestOaLocation W20043614751 @default.
- W2004361475 hasConcept C142724271 @default.
- W2004361475 hasConcept C16005928 @default.
- W2004361475 hasConcept C2778951404 @default.
- W2004361475 hasConcept C2779335771 @default.
- W2004361475 hasConcept C2779915019 @default.
- W2004361475 hasConcept C71924100 @default.
- W2004361475 hasConceptScore W2004361475C142724271 @default.
- W2004361475 hasConceptScore W2004361475C16005928 @default.
- W2004361475 hasConceptScore W2004361475C2778951404 @default.
- W2004361475 hasConceptScore W2004361475C2779335771 @default.
- W2004361475 hasConceptScore W2004361475C2779915019 @default.
- W2004361475 hasConceptScore W2004361475C71924100 @default.
- W2004361475 hasIssue "11" @default.
- W2004361475 hasLocation W20043614751 @default.
- W2004361475 hasLocation W20043614752 @default.
- W2004361475 hasOpenAccess W2004361475 @default.
- W2004361475 hasPrimaryLocation W20043614751 @default.
- W2004361475 hasRelatedWork W1977326233 @default.
- W2004361475 hasRelatedWork W2010375415 @default.
- W2004361475 hasRelatedWork W2015027654 @default.