Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004372172> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2004372172 endingPage "3366" @default.
- W2004372172 startingPage "3341" @default.
- W2004372172 abstract "The ordinary Bondi–Metzner–Sachs (BMS) group B is the common asymptotic symmetry group of all radiating, asymptotically flat, Lorentzian spacetimes. As such, B is the best candidate for the universal symmetry group of general relativity. However, in studying quantum gravity, spacetimes with signatures other than the usual Lorentzian one and complex spacetimes are frequently considered. Generalizations of B appropriate to these other signatures have been defined earlier. In particular, the generalization B(2, 2) appropriate to the ultrahyperbolic signature (+, +, −, −) has been described in detail, and the study of its irreducible unitary representations (IRs) of B(2, 2) has been initiated. The infinite little groups have been given explicitly, but the finite little groups have only been partially described. This study is completed by describing in detail the finite little groups and by giving all the necessary information in order to construct the IRs of B(2, 2) in all cases." @default.
- W2004372172 created "2016-06-24" @default.
- W2004372172 creator A5061358424 @default.
- W2004372172 date "2006-03-15" @default.
- W2004372172 modified "2023-09-27" @default.
- W2004372172 title "Construction of the irreducibles ofB(2, 2)" @default.
- W2004372172 cites W1496114780 @default.
- W2004372172 cites W1512537105 @default.
- W2004372172 cites W1971089079 @default.
- W2004372172 cites W1981943341 @default.
- W2004372172 cites W1985107901 @default.
- W2004372172 cites W1995112015 @default.
- W2004372172 cites W2007050596 @default.
- W2004372172 cites W2017721978 @default.
- W2004372172 cites W2033205652 @default.
- W2004372172 cites W2050864490 @default.
- W2004372172 cites W2051224721 @default.
- W2004372172 cites W2056571964 @default.
- W2004372172 cites W2057558486 @default.
- W2004372172 cites W2058245260 @default.
- W2004372172 cites W2058286334 @default.
- W2004372172 cites W2067663507 @default.
- W2004372172 cites W2078298120 @default.
- W2004372172 cites W2092423562 @default.
- W2004372172 cites W2123118550 @default.
- W2004372172 cites W2280308580 @default.
- W2004372172 cites W4244511684 @default.
- W2004372172 cites W581959860 @default.
- W2004372172 doi "https://doi.org/10.1088/0305-4470/39/13/013" @default.
- W2004372172 hasPublicationYear "2006" @default.
- W2004372172 type Work @default.
- W2004372172 sameAs 2004372172 @default.
- W2004372172 citedByCount "7" @default.
- W2004372172 countsByYear W20043721722015 @default.
- W2004372172 countsByYear W20043721722016 @default.
- W2004372172 countsByYear W20043721722017 @default.
- W2004372172 countsByYear W20043721722021 @default.
- W2004372172 crossrefType "journal-article" @default.
- W2004372172 hasAuthorship W2004372172A5061358424 @default.
- W2004372172 hasConcept C41008148 @default.
- W2004372172 hasConceptScore W2004372172C41008148 @default.
- W2004372172 hasIssue "13" @default.
- W2004372172 hasLocation W20043721721 @default.
- W2004372172 hasOpenAccess W2004372172 @default.
- W2004372172 hasPrimaryLocation W20043721721 @default.
- W2004372172 hasRelatedWork W1974891317 @default.
- W2004372172 hasRelatedWork W2021540654 @default.
- W2004372172 hasRelatedWork W2042127053 @default.
- W2004372172 hasRelatedWork W2088929118 @default.
- W2004372172 hasRelatedWork W2142036596 @default.
- W2004372172 hasRelatedWork W2187256922 @default.
- W2004372172 hasRelatedWork W2313400459 @default.
- W2004372172 hasRelatedWork W2913765211 @default.
- W2004372172 hasRelatedWork W2963510427 @default.
- W2004372172 hasRelatedWork W4244379845 @default.
- W2004372172 hasVolume "39" @default.
- W2004372172 isParatext "false" @default.
- W2004372172 isRetracted "false" @default.
- W2004372172 magId "2004372172" @default.
- W2004372172 workType "article" @default.