Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004394736> ?p ?o ?g. }
- W2004394736 endingPage "146" @default.
- W2004394736 startingPage "127" @default.
- W2004394736 abstract "The interplay of biological and physical patterns and processes within river ecosystems generates a complex matrix of interactions. A challenge in interdisciplinary river science is to dissect patterns and processes in multi-causal river ecosystems into hierarchical levels of organization. Hierarchy theory, and the associated concept of scale, provides a sound framework for achieving this. We present two interdisciplinary case studies that demonstrate how a multi-scale approach can dissect hierarchies of organization in river ecosystems. The first case study examined patterns of large wood character and distribution at three scales of a hierarchy of morphological river system organization in the large, lowland River Murray. The character and distribution of large wood was uniform at the largest reach scale (95 km length of river) because stream energy conditions are relatively uniform within the reach. However, there was an association between lower-level functional sets (straight or bend sections of river) and functional units (12 quadrats within each functional set) and the character and distribution of large wood, because stream energy differs between straight and bend morphologies, and the inner- and outer-channel functional units. Thus, functional sets and functional units are important levels of organization for large wood in the River Murray. The second case study examined the associations between macroinvertebrate assemblage distribution and environmental influences across a hierarchy of river system organization in the upland Murrumbidgee River catchment. We previously demonstrated that macroinvertebrate assemblages were arranged hierarchically at the region, cluster within region, reach within cluster and riffle within reach scales, with region and reach being the strongest signatures. In this study we related different scaled environmental factors, collected across a hierarchy of catchment, zone (valley confinement), reach (similar stream orders) and riffle scales to the region and cluster levels of macroinvertebrate distribution. The hierarchical pattern of large, region-level and local, reach-level macroinvertebrate distribution was matched by a large catchment-scale and local reach-scale of environmental influence. Intermediate zone-scale environmental factors and smaller riffle-scale factors were not important influences. Thus, large regions and catchments and local reaches are important levels of organization for macroinvertebrate-environment associations in rivers of the upper Murrumbidgee catchment. Both case studies support the applicability of hierarchy theory to describe the organization of physical–biological associations in river ecosystems. The multi-scaled approach allowed the detection of levels of hierarchical organization, and showed other hierarchical characteristics such as emergent properties and top–down constraint/bottom–up influence. Hierarchical understanding of river ecosystem organization will enhance river conservation and management because it facilitates a holistic, ecosystem perspective rather than a partial, single-scale, single-component or single-discipline perspective." @default.
- W2004394736 created "2016-06-24" @default.
- W2004394736 creator A5059729390 @default.
- W2004394736 creator A5064347118 @default.
- W2004394736 date "2007-09-01" @default.
- W2004394736 modified "2023-10-16" @default.
- W2004394736 title "Hierarchical patterns of physical–biological associations in river ecosystems" @default.
- W2004394736 cites W1964076306 @default.
- W2004394736 cites W1969786050 @default.
- W2004394736 cites W1972949746 @default.
- W2004394736 cites W1974560768 @default.
- W2004394736 cites W1977079622 @default.
- W2004394736 cites W1979443396 @default.
- W2004394736 cites W1989523109 @default.
- W2004394736 cites W1990855278 @default.
- W2004394736 cites W1995663318 @default.
- W2004394736 cites W1998955157 @default.
- W2004394736 cites W2000704081 @default.
- W2004394736 cites W2001134393 @default.
- W2004394736 cites W2004060645 @default.
- W2004394736 cites W2005665833 @default.
- W2004394736 cites W2013276429 @default.
- W2004394736 cites W2014393809 @default.
- W2004394736 cites W2028676401 @default.
- W2004394736 cites W2030196717 @default.
- W2004394736 cites W2030779023 @default.
- W2004394736 cites W2030920917 @default.
- W2004394736 cites W2039810102 @default.
- W2004394736 cites W2040766929 @default.
- W2004394736 cites W2047100300 @default.
- W2004394736 cites W2047405824 @default.
- W2004394736 cites W2052151516 @default.
- W2004394736 cites W2057334630 @default.
- W2004394736 cites W2057930778 @default.
- W2004394736 cites W2060772110 @default.
- W2004394736 cites W2070971207 @default.
- W2004394736 cites W2072289705 @default.
- W2004394736 cites W2078203461 @default.
- W2004394736 cites W2083020428 @default.
- W2004394736 cites W2086016047 @default.
- W2004394736 cites W2091881725 @default.
- W2004394736 cites W2092046993 @default.
- W2004394736 cites W2092578925 @default.
- W2004394736 cites W2105286980 @default.
- W2004394736 cites W2105827100 @default.
- W2004394736 cites W2108284600 @default.
- W2004394736 cites W2110252245 @default.
- W2004394736 cites W2113895209 @default.
- W2004394736 cites W2116544104 @default.
- W2004394736 cites W2120381041 @default.
- W2004394736 cites W2122072940 @default.
- W2004394736 cites W2128336650 @default.
- W2004394736 cites W2131018918 @default.
- W2004394736 cites W2133838674 @default.
- W2004394736 cites W2134200412 @default.
- W2004394736 cites W2135646483 @default.
- W2004394736 cites W2143175817 @default.
- W2004394736 cites W2155025466 @default.
- W2004394736 cites W2165985355 @default.
- W2004394736 cites W2169398645 @default.
- W2004394736 cites W2170328937 @default.
- W2004394736 cites W2173929419 @default.
- W2004394736 cites W2191796151 @default.
- W2004394736 cites W2322480672 @default.
- W2004394736 cites W3169298148 @default.
- W2004394736 cites W4234039386 @default.
- W2004394736 doi "https://doi.org/10.1016/j.geomorph.2006.07.016" @default.
- W2004394736 hasPublicationYear "2007" @default.
- W2004394736 type Work @default.
- W2004394736 sameAs 2004394736 @default.
- W2004394736 citedByCount "56" @default.
- W2004394736 countsByYear W20043947362012 @default.
- W2004394736 countsByYear W20043947362013 @default.
- W2004394736 countsByYear W20043947362015 @default.
- W2004394736 countsByYear W20043947362016 @default.
- W2004394736 countsByYear W20043947362018 @default.
- W2004394736 countsByYear W20043947362020 @default.
- W2004394736 countsByYear W20043947362021 @default.
- W2004394736 countsByYear W20043947362022 @default.
- W2004394736 countsByYear W20043947362023 @default.
- W2004394736 crossrefType "journal-article" @default.
- W2004394736 hasAuthorship W2004394736A5059729390 @default.
- W2004394736 hasAuthorship W2004394736A5064347118 @default.
- W2004394736 hasConcept C107394435 @default.
- W2004394736 hasConcept C110872660 @default.
- W2004394736 hasConcept C11731853 @default.
- W2004394736 hasConcept C126645576 @default.
- W2004394736 hasConcept C127162648 @default.
- W2004394736 hasConcept C127313418 @default.
- W2004394736 hasConcept C129934472 @default.
- W2004394736 hasConcept C162324750 @default.
- W2004394736 hasConcept C185933670 @default.
- W2004394736 hasConcept C187320778 @default.
- W2004394736 hasConcept C18903297 @default.
- W2004394736 hasConcept C205649164 @default.
- W2004394736 hasConcept C2777947409 @default.
- W2004394736 hasConcept C2778091200 @default.
- W2004394736 hasConcept C2778755073 @default.