Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004524557> ?p ?o ?g. }
- W2004524557 endingPage "222" @default.
- W2004524557 startingPage "213" @default.
- W2004524557 abstract "Due to the central roles of lipid binding proteins (LBPs) in many biological processes, sequence based identification of LBPs is of great interest. The major challenge is that LBPs are diverse in sequence, structure, and function which results in low accuracy of sequence homology based methods. Therefore, there is a need for developing alternative functional prediction methods irrespective of sequence similarity. To identify LBPs from non-LBPs, the performances of support vector machine (SVM) and neural network were compared in this study. Comprehensive protein features and various techniques were employed to create datasets. Five-fold cross-validation (CV) and independent evaluation (IE) tests were used to assess the validity of the two methods. The results indicated that SVM outperforms neural network. SVM achieved 89.28% (CV) and 89.55% (IE) overall accuracy in identification of LBPs from non-LBPs and 92.06% (CV) and 92.90% (IE) (in average) for classification of different LBPs classes. Increasing the number and the range of extracted protein features as well as optimization of the SVM parameters significantly increased the efficiency of LBPs class prediction in comparison to the only previous report in this field. Altogether, the results showed that the SVM algorithm can be run on broad, computationally calculated protein features and offers a promising tool in detection of LBPs classes. The proposed approach has the potential to integrate and improve the common sequence alignment based methods." @default.
- W2004524557 created "2016-06-24" @default.
- W2004524557 creator A5022014581 @default.
- W2004524557 creator A5025751512 @default.
- W2004524557 creator A5030906517 @default.
- W2004524557 creator A5074344367 @default.
- W2004524557 date "2014-09-01" @default.
- W2004524557 modified "2023-09-30" @default.
- W2004524557 title "Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology" @default.
- W2004524557 cites W1552455080 @default.
- W2004524557 cites W1977219051 @default.
- W2004524557 cites W1977715475 @default.
- W2004524557 cites W1980827966 @default.
- W2004524557 cites W1984694072 @default.
- W2004524557 cites W1984794455 @default.
- W2004524557 cites W1988788413 @default.
- W2004524557 cites W1990932448 @default.
- W2004524557 cites W2003613304 @default.
- W2004524557 cites W2006782375 @default.
- W2004524557 cites W2007980073 @default.
- W2004524557 cites W2008662636 @default.
- W2004524557 cites W2009373959 @default.
- W2004524557 cites W2012801636 @default.
- W2004524557 cites W2016319093 @default.
- W2004524557 cites W2018413616 @default.
- W2004524557 cites W2019488416 @default.
- W2004524557 cites W2022965734 @default.
- W2004524557 cites W2024609981 @default.
- W2004524557 cites W2026778803 @default.
- W2004524557 cites W2029904979 @default.
- W2004524557 cites W2030793934 @default.
- W2004524557 cites W2033720851 @default.
- W2004524557 cites W2034070267 @default.
- W2004524557 cites W2036329916 @default.
- W2004524557 cites W2037575202 @default.
- W2004524557 cites W2038681300 @default.
- W2004524557 cites W2038873127 @default.
- W2004524557 cites W2040994527 @default.
- W2004524557 cites W2042507562 @default.
- W2004524557 cites W2042667521 @default.
- W2004524557 cites W2047187013 @default.
- W2004524557 cites W2061827336 @default.
- W2004524557 cites W2074196504 @default.
- W2004524557 cites W2075176419 @default.
- W2004524557 cites W2077431172 @default.
- W2004524557 cites W2077838441 @default.
- W2004524557 cites W2079277579 @default.
- W2004524557 cites W2080915318 @default.
- W2004524557 cites W2087744510 @default.
- W2004524557 cites W2089989707 @default.
- W2004524557 cites W2090737615 @default.
- W2004524557 cites W2091505355 @default.
- W2004524557 cites W2092009382 @default.
- W2004524557 cites W2096387274 @default.
- W2004524557 cites W2097606916 @default.
- W2004524557 cites W2101581128 @default.
- W2004524557 cites W2102794349 @default.
- W2004524557 cites W2105131949 @default.
- W2004524557 cites W2106286842 @default.
- W2004524557 cites W2109109045 @default.
- W2004524557 cites W2114024619 @default.
- W2004524557 cites W2115694887 @default.
- W2004524557 cites W2116296021 @default.
- W2004524557 cites W2119027485 @default.
- W2004524557 cites W2125872855 @default.
- W2004524557 cites W2132292391 @default.
- W2004524557 cites W2132866237 @default.
- W2004524557 cites W2134920535 @default.
- W2004524557 cites W2136769496 @default.
- W2004524557 cites W2136930152 @default.
- W2004524557 cites W2137946943 @default.
- W2004524557 cites W2140860400 @default.
- W2004524557 cites W2145091739 @default.
- W2004524557 cites W2145489323 @default.
- W2004524557 cites W2145957695 @default.
- W2004524557 cites W2146628513 @default.
- W2004524557 cites W2155653793 @default.
- W2004524557 cites W2160115806 @default.
- W2004524557 cites W2160257187 @default.
- W2004524557 cites W2163864395 @default.
- W2004524557 cites W2170834471 @default.
- W2004524557 cites W2172154087 @default.
- W2004524557 cites W2172162168 @default.
- W2004524557 cites W2315928616 @default.
- W2004524557 cites W2330519130 @default.
- W2004524557 cites W4230509984 @default.
- W2004524557 cites W4249920046 @default.
- W2004524557 doi "https://doi.org/10.1016/j.jtbi.2014.04.040" @default.
- W2004524557 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24819464" @default.
- W2004524557 hasPublicationYear "2014" @default.
- W2004524557 type Work @default.
- W2004524557 sameAs 2004524557 @default.
- W2004524557 citedByCount "53" @default.
- W2004524557 countsByYear W20045245572014 @default.
- W2004524557 countsByYear W20045245572015 @default.
- W2004524557 countsByYear W20045245572016 @default.
- W2004524557 countsByYear W20045245572017 @default.
- W2004524557 countsByYear W20045245572018 @default.