Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004564780> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2004564780 abstract "Let G be a locally compact group, it: G -> £(L2(G)) the right regular representation of G, and C'»(i£ G: the function g ~» it(gxg~]) is norm continuous}. This note is devoted to the study of Gc. In particular, the compactly generated groups for which G = Gc are characterized. 1. Let G be a locally compact group and let it: G -» t(L2(G)) be the right regular representation of G on L2(G) with respect to a right Haar measure. The function it is continuous when £,(L2(G)) is given the strong operator topology, but it is not continuous with respect to the norm topology, except in trivial cases. Nevertheless, there is a middle ground, to which this note is devoted. Following [5], [8], let £G = {T E t(L2(G)): the function g~*it(g)Tit(g)* is norm continuous}. Then £G is a C*-algebra which contains the compact operators and has various pleasing properties (cf. [5, Theorem 2.2]). Let Gc = {x E G: it(x) E eG} = [x E G: the function g ~» it(gxg'x) is norm continuous}. It is easy to see that Gc is a subgroup of G. If G is abelian or discrete, then Gc = G; in general it is much smaller. The relationship between Gc and G is the main subject of this note. We shall denote the identity component and the center of G by t70 and Z(G), respectively. For x,y E G, CG(x) denotes the centralizer of x in G and [x,y] = xyx~xy~x. Definition 1.1. Let fibea Banach space of functions on G. Suppose that there exist constants C, 8 > 0 such that the following conditions are satisfied: (i) If tp E B and x E G, then Btt(x)tp E B, and IIJ»'77'(JC)*JDII ** C|MI> where Bit(x)tp(t) = tp(txx). (ii) Given 0 such that || X(tp) for all p E B such that tp • i/ = 0. (iii) For every neighborhood U of e in G there exists 0 =£ tp E B such that tp = 0 off UandX(tp) > 8tp. Then B will be called a homogeneous separating Banach space of functions on G. Received by the editors March 13, 1980 and, in revised form, June 18, 1980. 1980 Mathematics Subject Classification. Primary 47C15, 47D10. 'Research of both authors was partially supported by the National Science Foundation. 99 © 1981 American Mathematical Society 0002-9939/81/0000-0219/$02.50 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 100 CLAUDE SCHOCHET AND BERTRAM SCHREIBER Examples 1.2. Most of the Banach spaces commonly encountered in harmonic analysis satisfy the conditions of Definition 1.1. The following is a sampling of such spaces. (i) L(G), 1 £(7?) be the regular representation as in (i) of Definition 1.1. Set BGC = {x E G: the function g ~*Bit{gxg~x) is norm continuous}. The following observation provides the technical tool which is the key to studying BGC. Theorem 1.4. Let B, Bit and BGC be as in Definition 1.3, and let x E G. Then x E BGC if and only if CG(x) is an open subgroup of G. In view of Theorem 1.4 the subscript B in BGC is redundant and will be omitted following the proof of this theorem. Furthermore, the superscript in Gc may be read as referring to (norm) continuity or to (open) centralizers. Proof. Suppose first that CG(x) is open in G. Then the function g ~*Bir(gxg~x) is constant when restricted to the open subgroup CG(x) of G, so in particular it is norm continuous at the identity. Since Bit is a norm-bounded representation of G (1.1 (i)), it follows that the function in question is continuous on all of G. Conversely, suppose that CG(x) is not an open subgroup of G. Then any neighborhood V of e must contain some v E V CG(x). We shall show that Bit(gxg~x) — Btt(x) is bounded away from zero for all such g, hence x & BGC. As [g, x] =£ e there is a neighborhood W of e such that W n W[g, x] = 0. Let 0 t^ tp E B such that tp = 0 of f W and X(tp) > 8 tp. Then Bit([g, x]) is supported on W[ g, x]. Thus Bit(gxg-x) Bit(x) = (Bit([g,x]) l)Bir(x) > Bir([g,x]) I/C > B([g,x])tp-tp/Ctp >X(m)/C||m|| >8/C. □ Corollary 1.5. Let G be a connected group. Then Gc = Z(G). Proof. For any group G one has Z(G) c Gc trivially. Conversely, suppose that x E Gc. Then CG(x) is an open subgroup of G. But G is connected, so CG(x) = G. Thus x E Z(G). □ Corollary 1.6. Suppose that Gc = G. Then G0 c Z(G). The remainder of this note is devoted to the study of Gc. In §2 we consider the case when G = Gc and we obtain complete information when G is compactly generated. §3 is concerned with other cases. License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use CONTINUITY OF GROUP REPRESENTATIONS 101 2. In this section we characterize the compactly generated groups for which G = Gc and we obtain various equivalent formulations of this property. Lemma 2.1. Suppose that G = Gc. Let A and B be compact sets of G. Then [A,B] ={[x,y]:xEA,y E B) is a finite set. Proof. Let w, x, y, z E G with z E CG(x) n CG(y) (2.2) and w E CG(x) n CG(y) n CG(z). (2.3) Then [zx, vvy] = z;oty;c~lz~|y~1w~' = xyzwz~xw~xx~~x by (2.2) and (2.3)" @default.
- W2004564780 created "2016-06-24" @default.
- W2004564780 creator A5032202063 @default.
- W2004564780 creator A5045603236 @default.
- W2004564780 date "1981-01-01" @default.
- W2004564780 modified "2023-09-25" @default.
- W2004564780 title "Open centralizers and the continuity of group representations" @default.
- W2004564780 cites W1489646035 @default.
- W2004564780 cites W1508457673 @default.
- W2004564780 cites W1965952941 @default.
- W2004564780 cites W1982899267 @default.
- W2004564780 cites W2039064398 @default.
- W2004564780 cites W2087831023 @default.
- W2004564780 cites W2324430717 @default.
- W2004564780 doi "https://doi.org/10.1090/s0002-9939-1981-0603609-3" @default.
- W2004564780 hasPublicationYear "1981" @default.
- W2004564780 type Work @default.
- W2004564780 sameAs 2004564780 @default.
- W2004564780 citedByCount "0" @default.
- W2004564780 crossrefType "journal-article" @default.
- W2004564780 hasAuthorship W2004564780A5032202063 @default.
- W2004564780 hasAuthorship W2004564780A5045603236 @default.
- W2004564780 hasBestOaLocation W20045647801 @default.
- W2004564780 hasConcept C114614502 @default.
- W2004564780 hasConcept C118615104 @default.
- W2004564780 hasConcept C130133044 @default.
- W2004564780 hasConcept C136170076 @default.
- W2004564780 hasConcept C17744445 @default.
- W2004564780 hasConcept C178790620 @default.
- W2004564780 hasConcept C184720557 @default.
- W2004564780 hasConcept C185592680 @default.
- W2004564780 hasConcept C187915474 @default.
- W2004564780 hasConcept C191795146 @default.
- W2004564780 hasConcept C199539241 @default.
- W2004564780 hasConcept C202444582 @default.
- W2004564780 hasConcept C2776038885 @default.
- W2004564780 hasConcept C2781311116 @default.
- W2004564780 hasConcept C31498916 @default.
- W2004564780 hasConcept C33923547 @default.
- W2004564780 hasConcept C46467970 @default.
- W2004564780 hasConcept C58450382 @default.
- W2004564780 hasConcept C75174853 @default.
- W2004564780 hasConcept C89436406 @default.
- W2004564780 hasConcept C96386209 @default.
- W2004564780 hasConceptScore W2004564780C114614502 @default.
- W2004564780 hasConceptScore W2004564780C118615104 @default.
- W2004564780 hasConceptScore W2004564780C130133044 @default.
- W2004564780 hasConceptScore W2004564780C136170076 @default.
- W2004564780 hasConceptScore W2004564780C17744445 @default.
- W2004564780 hasConceptScore W2004564780C178790620 @default.
- W2004564780 hasConceptScore W2004564780C184720557 @default.
- W2004564780 hasConceptScore W2004564780C185592680 @default.
- W2004564780 hasConceptScore W2004564780C187915474 @default.
- W2004564780 hasConceptScore W2004564780C191795146 @default.
- W2004564780 hasConceptScore W2004564780C199539241 @default.
- W2004564780 hasConceptScore W2004564780C202444582 @default.
- W2004564780 hasConceptScore W2004564780C2776038885 @default.
- W2004564780 hasConceptScore W2004564780C2781311116 @default.
- W2004564780 hasConceptScore W2004564780C31498916 @default.
- W2004564780 hasConceptScore W2004564780C33923547 @default.
- W2004564780 hasConceptScore W2004564780C46467970 @default.
- W2004564780 hasConceptScore W2004564780C58450382 @default.
- W2004564780 hasConceptScore W2004564780C75174853 @default.
- W2004564780 hasConceptScore W2004564780C89436406 @default.
- W2004564780 hasConceptScore W2004564780C96386209 @default.
- W2004564780 hasLocation W20045647801 @default.
- W2004564780 hasOpenAccess W2004564780 @default.
- W2004564780 hasPrimaryLocation W20045647801 @default.
- W2004564780 hasRelatedWork W1977840885 @default.
- W2004564780 hasRelatedWork W2006761766 @default.
- W2004564780 hasRelatedWork W2013206810 @default.
- W2004564780 hasRelatedWork W2022972610 @default.
- W2004564780 hasRelatedWork W2052089923 @default.
- W2004564780 hasRelatedWork W2119335694 @default.
- W2004564780 isParatext "false" @default.
- W2004564780 isRetracted "false" @default.
- W2004564780 magId "2004564780" @default.
- W2004564780 workType "article" @default.