Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004593766> ?p ?o ?g. }
- W2004593766 endingPage "4532" @default.
- W2004593766 startingPage "4523" @default.
- W2004593766 abstract "An innovative computational approach is proposed to design ionic liquids (ILs) based on a new a priori molecular descriptor of ILs, derived from quantum-chemical COSMO-RS methodology. In this work, the charge distribution on the polarity scale given by COSMO-RS is used to characterize the chemical nature of both the cations and anions of the IL structures, using simple molecular models in the calculations. As a result, a novel a priori quantum-chemical parameter, Sσ-profile, is defined for 45 imidazolium-based ILs, as a quantitative numerical indicator of their electronic structures and molecular sizes. Subsequently, neural networks (NNs) are successfully applied to establish a relationship between the electronic information given by the Sσ-profile molecular descriptor and the density properties of IL solvents. As a consequence, we develop here an a priori computational tool for screening ILs with required properties, using COSMO-RS predictions to NN design and optimization. Current methodology is validated following a classical quantitative structure−property relationship scheme, which is the main aim of this work. However, a second part of the current investigation will be devoted to a more useful design strategy, which introduces the desired IL properties as input into inverse NN, resulting in selections of counterions as output, i.e., directly designing ILs on the computer." @default.
- W2004593766 created "2016-06-24" @default.
- W2004593766 creator A5014031238 @default.
- W2004593766 creator A5023007533 @default.
- W2004593766 creator A5068756151 @default.
- W2004593766 creator A5069925402 @default.
- W2004593766 date "2008-06-04" @default.
- W2004593766 modified "2023-10-18" @default.
- W2004593766 title "Development of an a Priori Ionic Liquid Design Tool. 1. Integration of a Novel COSMO-RS Molecular Descriptor on Neural Networks" @default.
- W2004593766 cites W1878969881 @default.
- W2004593766 cites W1919048594 @default.
- W2004593766 cites W1964771695 @default.
- W2004593766 cites W1965171286 @default.
- W2004593766 cites W1966418157 @default.
- W2004593766 cites W1969883977 @default.
- W2004593766 cites W1974176198 @default.
- W2004593766 cites W1978958540 @default.
- W2004593766 cites W1981246595 @default.
- W2004593766 cites W1981392543 @default.
- W2004593766 cites W1989548779 @default.
- W2004593766 cites W1992718099 @default.
- W2004593766 cites W1995863104 @default.
- W2004593766 cites W1999411168 @default.
- W2004593766 cites W2000750116 @default.
- W2004593766 cites W2003143162 @default.
- W2004593766 cites W2005884023 @default.
- W2004593766 cites W2006511522 @default.
- W2004593766 cites W2011930321 @default.
- W2004593766 cites W2014377190 @default.
- W2004593766 cites W2015596418 @default.
- W2004593766 cites W2022825572 @default.
- W2004593766 cites W2026484842 @default.
- W2004593766 cites W2028161734 @default.
- W2004593766 cites W2030687437 @default.
- W2004593766 cites W2032286236 @default.
- W2004593766 cites W2034302068 @default.
- W2004593766 cites W2035943359 @default.
- W2004593766 cites W2038730980 @default.
- W2004593766 cites W2040580919 @default.
- W2004593766 cites W2045742817 @default.
- W2004593766 cites W2046527774 @default.
- W2004593766 cites W2047812362 @default.
- W2004593766 cites W2052843294 @default.
- W2004593766 cites W2053236517 @default.
- W2004593766 cites W2058210956 @default.
- W2004593766 cites W2059194377 @default.
- W2004593766 cites W2059457086 @default.
- W2004593766 cites W2061011942 @default.
- W2004593766 cites W2063550015 @default.
- W2004593766 cites W2063618473 @default.
- W2004593766 cites W2072581109 @default.
- W2004593766 cites W2077871761 @default.
- W2004593766 cites W2080364776 @default.
- W2004593766 cites W2081679930 @default.
- W2004593766 cites W2082769051 @default.
- W2004593766 cites W2083564032 @default.
- W2004593766 cites W2094671298 @default.
- W2004593766 cites W2094743511 @default.
- W2004593766 cites W2104982404 @default.
- W2004593766 cites W2105065508 @default.
- W2004593766 cites W2117925963 @default.
- W2004593766 cites W2118053386 @default.
- W2004593766 cites W2137910426 @default.
- W2004593766 cites W2216412596 @default.
- W2004593766 cites W2482845407 @default.
- W2004593766 cites W4231379455 @default.
- W2004593766 cites W4248104288 @default.
- W2004593766 cites W583380930 @default.
- W2004593766 doi "https://doi.org/10.1021/ie800056q" @default.
- W2004593766 hasPublicationYear "2008" @default.
- W2004593766 type Work @default.
- W2004593766 sameAs 2004593766 @default.
- W2004593766 citedByCount "74" @default.
- W2004593766 countsByYear W20045937662012 @default.
- W2004593766 countsByYear W20045937662013 @default.
- W2004593766 countsByYear W20045937662014 @default.
- W2004593766 countsByYear W20045937662015 @default.
- W2004593766 countsByYear W20045937662016 @default.
- W2004593766 countsByYear W20045937662017 @default.
- W2004593766 countsByYear W20045937662018 @default.
- W2004593766 countsByYear W20045937662019 @default.
- W2004593766 countsByYear W20045937662020 @default.
- W2004593766 countsByYear W20045937662021 @default.
- W2004593766 countsByYear W20045937662022 @default.
- W2004593766 countsByYear W20045937662023 @default.
- W2004593766 crossrefType "journal-article" @default.
- W2004593766 hasAuthorship W2004593766A5014031238 @default.
- W2004593766 hasAuthorship W2004593766A5023007533 @default.
- W2004593766 hasAuthorship W2004593766A5068756151 @default.
- W2004593766 hasAuthorship W2004593766A5069925402 @default.
- W2004593766 hasConcept C111472728 @default.
- W2004593766 hasConcept C121332964 @default.
- W2004593766 hasConcept C138885662 @default.
- W2004593766 hasConcept C145148216 @default.
- W2004593766 hasConcept C147597530 @default.
- W2004593766 hasConcept C148043351 @default.
- W2004593766 hasConcept C1491633281 @default.
- W2004593766 hasConcept C154881586 @default.