Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004648657> ?p ?o ?g. }
- W2004648657 endingPage "438" @default.
- W2004648657 startingPage "417" @default.
- W2004648657 abstract "In this study we present a semi-analytical Maxwell-viscoelastic model of the variable tidal stress field acting on Europa’s surface. In our analysis, we take into account surface stresses induced by the small eccentricity of Europa’s orbit, the non-zero obliquity of Europa’s spin axis – both acting on a diurnal 3.55-days timescale – and the reorientation of the ice shell as a result of non-synchronous rotation (NSR). We assume that Europa’s putative ocean is covered by an ice shell, which we subdivide in a low-viscous and warm lower ice layer (asthenosphere, viscosity 1012–1017 Pa s), and a high-viscous and cold upper ice layer (lithosphere, viscosity 1021 Pa s). Viscoelastic relaxation influences surface stresses in two ways: (1) through viscoelastic relaxation in the lithosphere and (2) through the viscoelastic tidal response of Europa’s interior. The amount of relaxation in the lithosphere is proportional to the ratio between the period of the forcing mechanism and the Maxwell time of the high-viscous lithosphere. As a result, this effect is only relevant to surface stresses caused by the slow NSR mechanism. On the other hand, the importance of the viscoelastic response on surface stresses is proportional to the ratio between the relaxation time (τj) of a given viscoelastic mode j and the period of the forcing function. On a diurnal timescale the fast relaxation of transient modes related to the low viscosity of the asthenosphere can alter the magnitude and phase shift of the diurnal stress field at Europa’s surface. The effects are largest, up to 20% in magnitude and 7° in phase for ice rigidities lower than 3.487 GPa, when the relaxation time of the aforementioned transient modes approaches the inverse of the average angular rate of Europa’s orbit. On timescales relevant for NSR (>104 years) the magnitude and phase shift of NSR surface stresses can be affected by viscoelastic relaxation of the ocean–ice boundary. This effect, however, becomes only important when the behavior of the lithosphere w.r.t. NSR approaches the fluid limit, i.e. for strong relaxation in the lithosphere. The combination of NSR and diurnal stresses for different amounts of viscoelastic relaxation of NSR stresses in the lithosphere leads to a large variety of global stress fields that can explain the formation of the large diversity of lineament morphologies observed on Europa’s surface. Variation of the amount of relaxation in the lithosphere is likely due to changes in the spin rate of Europa and/or the rheological properties of the surface. In addition, we show that a small obliquity(<1°) can have a considerable effect on Europa’s diurnal stress field. A non-zero obliquity breaks the symmetric distribution of stress patterns with respect to the equator, thereby affecting the magnitude and orientation of the principal stresses at the surface. As expected, increasing the value of Europa’s obliquity leads to larger diurnal stresses at the surface, especially when Europa is located 90° away from the nodes formed by the intersection of its orbital and equatorial planes." @default.
- W2004648657 created "2016-06-24" @default.
- W2004648657 creator A5028136797 @default.
- W2004648657 creator A5087630790 @default.
- W2004648657 date "2011-09-01" @default.
- W2004648657 modified "2023-09-27" @default.
- W2004648657 title "Effects of low-viscous layers and a non-zero obliquity on surface stresses induced by diurnal tides and non-synchronous rotation: The case of Europa" @default.
- W2004648657 cites W1480546459 @default.
- W2004648657 cites W1630567614 @default.
- W2004648657 cites W1972515060 @default.
- W2004648657 cites W1980230957 @default.
- W2004648657 cites W1982540681 @default.
- W2004648657 cites W1985086061 @default.
- W2004648657 cites W1990151757 @default.
- W2004648657 cites W1994863733 @default.
- W2004648657 cites W1995099272 @default.
- W2004648657 cites W1997368455 @default.
- W2004648657 cites W1998731130 @default.
- W2004648657 cites W1999987148 @default.
- W2004648657 cites W2004801095 @default.
- W2004648657 cites W2007106925 @default.
- W2004648657 cites W2008960427 @default.
- W2004648657 cites W2015005289 @default.
- W2004648657 cites W2020133832 @default.
- W2004648657 cites W2032524362 @default.
- W2004648657 cites W2032939543 @default.
- W2004648657 cites W2037946642 @default.
- W2004648657 cites W2041248293 @default.
- W2004648657 cites W2041554536 @default.
- W2004648657 cites W2042932461 @default.
- W2004648657 cites W2044429979 @default.
- W2004648657 cites W2046063555 @default.
- W2004648657 cites W2054794276 @default.
- W2004648657 cites W2056604828 @default.
- W2004648657 cites W2059472551 @default.
- W2004648657 cites W2060734572 @default.
- W2004648657 cites W2072808331 @default.
- W2004648657 cites W2075771647 @default.
- W2004648657 cites W2076170640 @default.
- W2004648657 cites W2076540845 @default.
- W2004648657 cites W2079361485 @default.
- W2004648657 cites W2079614579 @default.
- W2004648657 cites W2081992305 @default.
- W2004648657 cites W2084252999 @default.
- W2004648657 cites W2087801168 @default.
- W2004648657 cites W2092506868 @default.
- W2004648657 cites W2093634884 @default.
- W2004648657 cites W2096055099 @default.
- W2004648657 cites W2097312902 @default.
- W2004648657 cites W2097410274 @default.
- W2004648657 cites W2105507741 @default.
- W2004648657 cites W2117234027 @default.
- W2004648657 cites W2119631948 @default.
- W2004648657 cites W2121459277 @default.
- W2004648657 cites W2121551303 @default.
- W2004648657 cites W2128995651 @default.
- W2004648657 cites W2133309725 @default.
- W2004648657 cites W2133948550 @default.
- W2004648657 cites W2143937237 @default.
- W2004648657 cites W2156202286 @default.
- W2004648657 cites W2160942393 @default.
- W2004648657 cites W2161983255 @default.
- W2004648657 cites W2171719085 @default.
- W2004648657 cites W3009321490 @default.
- W2004648657 cites W4247443114 @default.
- W2004648657 doi "https://doi.org/10.1016/j.icarus.2011.05.034" @default.
- W2004648657 hasPublicationYear "2011" @default.
- W2004648657 type Work @default.
- W2004648657 sameAs 2004648657 @default.
- W2004648657 citedByCount "47" @default.
- W2004648657 countsByYear W20046486572012 @default.
- W2004648657 countsByYear W20046486572013 @default.
- W2004648657 countsByYear W20046486572014 @default.
- W2004648657 countsByYear W20046486572015 @default.
- W2004648657 countsByYear W20046486572016 @default.
- W2004648657 countsByYear W20046486572017 @default.
- W2004648657 countsByYear W20046486572018 @default.
- W2004648657 countsByYear W20046486572019 @default.
- W2004648657 countsByYear W20046486572020 @default.
- W2004648657 countsByYear W20046486572021 @default.
- W2004648657 countsByYear W20046486572022 @default.
- W2004648657 countsByYear W20046486572023 @default.
- W2004648657 crossrefType "journal-article" @default.
- W2004648657 hasAuthorship W2004648657A5028136797 @default.
- W2004648657 hasAuthorship W2004648657A5087630790 @default.
- W2004648657 hasConcept C121332964 @default.
- W2004648657 hasConcept C127172972 @default.
- W2004648657 hasConcept C127313418 @default.
- W2004648657 hasConcept C13495919 @default.
- W2004648657 hasConcept C149912024 @default.
- W2004648657 hasConcept C15744967 @default.
- W2004648657 hasConcept C165205528 @default.
- W2004648657 hasConcept C16942324 @default.
- W2004648657 hasConcept C171338203 @default.
- W2004648657 hasConcept C186541917 @default.
- W2004648657 hasConcept C197115733 @default.
- W2004648657 hasConcept C202974441 @default.
- W2004648657 hasConcept C2776029896 @default.