Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004673561> ?p ?o ?g. }
- W2004673561 abstract "Bayesian networks (BNs) are popular for modeling conditional distributions of variables and causal relationships, especially in biological settings such as protein interactions, gene regulatory networks and microbial interactions. Previous BN structure learning algorithms treat variables with similar tendency separately. In this paper, we propose a grouped sparse Gaussian BN (GSGBN) structure learning algorithm which creates BN based on three assumptions: (i) variables follow a multivariate Gaussian distribution, (ii) the network only contains a few edges (sparse), (iii) similar variables have less-divergent sets of parents, while not-so-similar ones should have divergent sets of parents (variable grouping). We use L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> regularization to make the learned network sparse, and another term to incorporate shared information among variables. For similar variables, GSGBN tends to penalize the differences of similar variables' parent sets more, compared to those not-so-similar variables' parent sets. The similarity of variables is learned from the data by alternating optimization, without prior domain knowledge. Based on this new definition of the optimal BN, a coordinate descent algorithm and a projected gradient descent algorithm are developed to obtain edges of the network and also similarity of variables. Experimental results on both simulated and real datasets show that GSGBN has substantially superior prediction performance for structure learning when compared to several existing algorithms." @default.
- W2004673561 created "2016-06-24" @default.
- W2004673561 creator A5022683388 @default.
- W2004673561 creator A5026415544 @default.
- W2004673561 creator A5029123550 @default.
- W2004673561 creator A5035659330 @default.
- W2004673561 creator A5062947742 @default.
- W2004673561 date "2014-12-01" @default.
- W2004673561 modified "2023-10-14" @default.
- W2004673561 title "Learning Sparse Gaussian Bayesian Network Structure by Variable Grouping" @default.
- W2004673561 cites W113002869 @default.
- W2004673561 cites W149574399 @default.
- W2004673561 cites W1511986666 @default.
- W2004673561 cites W1526097585 @default.
- W2004673561 cites W1530964327 @default.
- W2004673561 cites W1769824028 @default.
- W2004673561 cites W1978259121 @default.
- W2004673561 cites W1988987391 @default.
- W2004673561 cites W1992461476 @default.
- W2004673561 cites W2097360283 @default.
- W2004673561 cites W2099900459 @default.
- W2004673561 cites W2113606819 @default.
- W2004673561 cites W2121273346 @default.
- W2004673561 cites W2129564794 @default.
- W2004673561 cites W2135046866 @default.
- W2004673561 cites W2149337551 @default.
- W2004673561 cites W2154736508 @default.
- W2004673561 cites W2155573334 @default.
- W2004673561 cites W2161615424 @default.
- W2004673561 cites W2164278908 @default.
- W2004673561 cites W2397866408 @default.
- W2004673561 cites W2963139738 @default.
- W2004673561 doi "https://doi.org/10.1109/icdm.2014.126" @default.
- W2004673561 hasPublicationYear "2014" @default.
- W2004673561 type Work @default.
- W2004673561 sameAs 2004673561 @default.
- W2004673561 citedByCount "1" @default.
- W2004673561 countsByYear W20046735612019 @default.
- W2004673561 crossrefType "proceedings-article" @default.
- W2004673561 hasAuthorship W2004673561A5022683388 @default.
- W2004673561 hasAuthorship W2004673561A5026415544 @default.
- W2004673561 hasAuthorship W2004673561A5029123550 @default.
- W2004673561 hasAuthorship W2004673561A5035659330 @default.
- W2004673561 hasAuthorship W2004673561A5062947742 @default.
- W2004673561 hasBestOaLocation W20046735612 @default.
- W2004673561 hasConcept C103278499 @default.
- W2004673561 hasConcept C107673813 @default.
- W2004673561 hasConcept C11413529 @default.
- W2004673561 hasConcept C115961682 @default.
- W2004673561 hasConcept C119857082 @default.
- W2004673561 hasConcept C121332964 @default.
- W2004673561 hasConcept C134306372 @default.
- W2004673561 hasConcept C153180895 @default.
- W2004673561 hasConcept C153258448 @default.
- W2004673561 hasConcept C154945302 @default.
- W2004673561 hasConcept C157553263 @default.
- W2004673561 hasConcept C161584116 @default.
- W2004673561 hasConcept C163716315 @default.
- W2004673561 hasConcept C177384507 @default.
- W2004673561 hasConcept C177769412 @default.
- W2004673561 hasConcept C182365436 @default.
- W2004673561 hasConcept C2776135515 @default.
- W2004673561 hasConcept C33724603 @default.
- W2004673561 hasConcept C33923547 @default.
- W2004673561 hasConcept C41008148 @default.
- W2004673561 hasConcept C50644808 @default.
- W2004673561 hasConcept C51167844 @default.
- W2004673561 hasConcept C62520636 @default.
- W2004673561 hasConcept C79772020 @default.
- W2004673561 hasConceptScore W2004673561C103278499 @default.
- W2004673561 hasConceptScore W2004673561C107673813 @default.
- W2004673561 hasConceptScore W2004673561C11413529 @default.
- W2004673561 hasConceptScore W2004673561C115961682 @default.
- W2004673561 hasConceptScore W2004673561C119857082 @default.
- W2004673561 hasConceptScore W2004673561C121332964 @default.
- W2004673561 hasConceptScore W2004673561C134306372 @default.
- W2004673561 hasConceptScore W2004673561C153180895 @default.
- W2004673561 hasConceptScore W2004673561C153258448 @default.
- W2004673561 hasConceptScore W2004673561C154945302 @default.
- W2004673561 hasConceptScore W2004673561C157553263 @default.
- W2004673561 hasConceptScore W2004673561C161584116 @default.
- W2004673561 hasConceptScore W2004673561C163716315 @default.
- W2004673561 hasConceptScore W2004673561C177384507 @default.
- W2004673561 hasConceptScore W2004673561C177769412 @default.
- W2004673561 hasConceptScore W2004673561C182365436 @default.
- W2004673561 hasConceptScore W2004673561C2776135515 @default.
- W2004673561 hasConceptScore W2004673561C33724603 @default.
- W2004673561 hasConceptScore W2004673561C33923547 @default.
- W2004673561 hasConceptScore W2004673561C41008148 @default.
- W2004673561 hasConceptScore W2004673561C50644808 @default.
- W2004673561 hasConceptScore W2004673561C51167844 @default.
- W2004673561 hasConceptScore W2004673561C62520636 @default.
- W2004673561 hasConceptScore W2004673561C79772020 @default.
- W2004673561 hasLocation W20046735611 @default.
- W2004673561 hasLocation W20046735612 @default.
- W2004673561 hasOpenAccess W2004673561 @default.
- W2004673561 hasPrimaryLocation W20046735611 @default.
- W2004673561 hasRelatedWork W2004673561 @default.
- W2004673561 hasRelatedWork W2130085518 @default.
- W2004673561 hasRelatedWork W3028721798 @default.