Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004736732> ?p ?o ?g. }
- W2004736732 endingPage "22" @default.
- W2004736732 startingPage "15" @default.
- W2004736732 abstract "Axisymmetric Drop Shape Analysis (ADSA) has been extensively used for surface tension measurement. In essence, ADSA works by matching a theoretical profile of the drop to the extracted experimental profile, taking surface tension as an adjustable parameter. Of the three main building blocks of ADSA, i.e. edge detection, the numerical integration of the Laplace equation for generating theoretical curves and the optimization procedure, only edge detection (that extracts the drop profile line from the drop image) needs extensive study. For the purpose of this article, the numerical integration of the Laplace equation for generating theoretical curves and the optimization procedure will only require a minor effort. It is the aim of this paper to investigate how far the surface tension accuracy of drop shape techniques can be pushed by fine tuning and optimizing edge detection strategies for a given drop image. Two different aspects of edge detection are pursued here: sub-pixel resolution and pixel resolution. The effect of two sub-pixel resolution strategies, i.e. spline and sigmoid, on the accuracy of surface tension measurement is investigated. It is found that the number of pixel points in the fitting procedure of the sub-pixel resolution techniques is crucial, and its value should be determined based on the contrast of the image, i.e. the gray level difference between the drop and the background. On the pixel resolution side, two suitable and reliable edge detectors, i.e. Canny and SUSAN, are explored, and the effect of user-specified parameters of the edge detector on the accuracy of surface tension measurement is scrutinized. Based on the contrast of the image, an optimum value of the user-specified parameter of the edge detector, SUSAN, is suggested. Overall, an accuracy of 0.01 mJ/m2 is achievable for the surface tension determination by careful fine tuning of edge detection algorithms." @default.
- W2004736732 created "2016-06-24" @default.
- W2004736732 creator A5014007781 @default.
- W2004736732 creator A5014563485 @default.
- W2004736732 creator A5070781307 @default.
- W2004736732 date "2013-11-01" @default.
- W2004736732 modified "2023-09-25" @default.
- W2004736732 title "Accuracy of surface tension measurement from drop shapes: The role of image analysis" @default.
- W2004736732 cites W1979329345 @default.
- W2004736732 cites W1990270715 @default.
- W2004736732 cites W1994285174 @default.
- W2004736732 cites W1994898654 @default.
- W2004736732 cites W2007226482 @default.
- W2004736732 cites W2007920684 @default.
- W2004736732 cites W2009865188 @default.
- W2004736732 cites W2009873789 @default.
- W2004736732 cites W2013002780 @default.
- W2004736732 cites W2015745022 @default.
- W2004736732 cites W2018226648 @default.
- W2004736732 cites W2023307137 @default.
- W2004736732 cites W2025037678 @default.
- W2004736732 cites W2027030805 @default.
- W2004736732 cites W2028035094 @default.
- W2004736732 cites W2028841133 @default.
- W2004736732 cites W2030246402 @default.
- W2004736732 cites W2041399723 @default.
- W2004736732 cites W2048145653 @default.
- W2004736732 cites W2058579672 @default.
- W2004736732 cites W2064996855 @default.
- W2004736732 cites W2066424507 @default.
- W2004736732 cites W2079644049 @default.
- W2004736732 cites W2086132210 @default.
- W2004736732 cites W2087070363 @default.
- W2004736732 cites W2099046646 @default.
- W2004736732 cites W2109462743 @default.
- W2004736732 cites W2145023731 @default.
- W2004736732 cites W2171074980 @default.
- W2004736732 cites W2329812287 @default.
- W2004736732 cites W2770469415 @default.
- W2004736732 cites W4361865001 @default.
- W2004736732 doi "https://doi.org/10.1016/j.cis.2013.07.004" @default.
- W2004736732 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24018120" @default.
- W2004736732 hasPublicationYear "2013" @default.
- W2004736732 type Work @default.
- W2004736732 sameAs 2004736732 @default.
- W2004736732 citedByCount "34" @default.
- W2004736732 countsByYear W20047367322014 @default.
- W2004736732 countsByYear W20047367322015 @default.
- W2004736732 countsByYear W20047367322016 @default.
- W2004736732 countsByYear W20047367322017 @default.
- W2004736732 countsByYear W20047367322018 @default.
- W2004736732 countsByYear W20047367322019 @default.
- W2004736732 countsByYear W20047367322020 @default.
- W2004736732 countsByYear W20047367322021 @default.
- W2004736732 countsByYear W20047367322022 @default.
- W2004736732 countsByYear W20047367322023 @default.
- W2004736732 crossrefType "journal-article" @default.
- W2004736732 hasAuthorship W2004736732A5014007781 @default.
- W2004736732 hasAuthorship W2004736732A5014563485 @default.
- W2004736732 hasAuthorship W2004736732A5070781307 @default.
- W2004736732 hasConcept C115961682 @default.
- W2004736732 hasConcept C120665830 @default.
- W2004736732 hasConcept C121332964 @default.
- W2004736732 hasConcept C134306372 @default.
- W2004736732 hasConcept C14705441 @default.
- W2004736732 hasConcept C154945302 @default.
- W2004736732 hasConcept C160633673 @default.
- W2004736732 hasConcept C182310444 @default.
- W2004736732 hasConcept C193536780 @default.
- W2004736732 hasConcept C2781345722 @default.
- W2004736732 hasConcept C31972630 @default.
- W2004736732 hasConcept C33923547 @default.
- W2004736732 hasConcept C41008148 @default.
- W2004736732 hasConcept C50644808 @default.
- W2004736732 hasConcept C62520636 @default.
- W2004736732 hasConcept C70615421 @default.
- W2004736732 hasConcept C76155785 @default.
- W2004736732 hasConcept C81388566 @default.
- W2004736732 hasConcept C8892853 @default.
- W2004736732 hasConcept C9417928 @default.
- W2004736732 hasConceptScore W2004736732C115961682 @default.
- W2004736732 hasConceptScore W2004736732C120665830 @default.
- W2004736732 hasConceptScore W2004736732C121332964 @default.
- W2004736732 hasConceptScore W2004736732C134306372 @default.
- W2004736732 hasConceptScore W2004736732C14705441 @default.
- W2004736732 hasConceptScore W2004736732C154945302 @default.
- W2004736732 hasConceptScore W2004736732C160633673 @default.
- W2004736732 hasConceptScore W2004736732C182310444 @default.
- W2004736732 hasConceptScore W2004736732C193536780 @default.
- W2004736732 hasConceptScore W2004736732C2781345722 @default.
- W2004736732 hasConceptScore W2004736732C31972630 @default.
- W2004736732 hasConceptScore W2004736732C33923547 @default.
- W2004736732 hasConceptScore W2004736732C41008148 @default.
- W2004736732 hasConceptScore W2004736732C50644808 @default.
- W2004736732 hasConceptScore W2004736732C62520636 @default.
- W2004736732 hasConceptScore W2004736732C70615421 @default.
- W2004736732 hasConceptScore W2004736732C76155785 @default.
- W2004736732 hasConceptScore W2004736732C81388566 @default.