Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004756053> ?p ?o ?g. }
- W2004756053 endingPage "568" @default.
- W2004756053 startingPage "529" @default.
- W2004756053 abstract "The theory stemming from the statistical representation of turbulent flames is presented and developed, the major aim being to describe the basic processes in relatively simple flames. Starting from conservation equations, with the assumption of low Mach number and high Reynolds number, it is shown that the properties at any point in the flame can be determined from the transport equations for the velocity U and a set of scalars ̅ : ̅ represents the species mass fractions and enthalpy. However, the solution of these equations with initial conditions and boundary conditions appropriate to turbulent flames is prohibitively difficult. Statistical theories attempt to describe the behaviour of averaged quantities in terms of averaged quantities. This requires the introduction of closure approximations, but renders a more readily soluble set of equations. A closure of the Reynolds-stress equations and the equation for the joint probability density function of ̅ is considered. The use of the joint probability density function (p.d.f.) equation removes the difficulties that are otherwise encountered due to non-linear functions of the scalars (such as reaction rates). While the transport equation for the joint p.d.f. provides a useful description of the physics, its solution is feasible only for simple cases. As a practical alternative, a general method is presented for estimating the joint p.d.f. from its first and second moments: transport equations for these quantities are also considered therefore. Modelled transport equations for the Reynolds stresses, the dissipation rate, scalar moments and scalar fluxes are discussed, including the effects of reaction and density variations. A physical interpretation of the joint p.d.f. equation is given and the modelling of the unknown terms is considered. A general method for estimating the joint p.d.f. is presented. It assumes that the joint p.d.f. is the statistically most likely distribution with the same first and second moments. This distribution is determined for any number of reactive or non-reactive scalars." @default.
- W2004756053 created "2016-06-24" @default.
- W2004756053 creator A5090788005 @default.
- W2004756053 date "1979-07-31" @default.
- W2004756053 modified "2023-10-15" @default.
- W2004756053 title "The statistical theory of turbulent flames" @default.
- W2004756053 cites W1676718195 @default.
- W2004756053 cites W1967292039 @default.
- W2004756053 cites W1980712166 @default.
- W2004756053 cites W1980906846 @default.
- W2004756053 cites W1986562052 @default.
- W2004756053 cites W1998850750 @default.
- W2004756053 cites W2003900597 @default.
- W2004756053 cites W2016082728 @default.
- W2004756053 cites W2019655755 @default.
- W2004756053 cites W2029549341 @default.
- W2004756053 cites W2032227273 @default.
- W2004756053 cites W2041151916 @default.
- W2004756053 cites W2049190161 @default.
- W2004756053 cites W2051643012 @default.
- W2004756053 cites W2060820730 @default.
- W2004756053 cites W2062474936 @default.
- W2004756053 cites W2063300091 @default.
- W2004756053 cites W2069900882 @default.
- W2004756053 cites W2071871056 @default.
- W2004756053 cites W2085800793 @default.
- W2004756053 cites W2100278556 @default.
- W2004756053 cites W2113348419 @default.
- W2004756053 cites W2128652407 @default.
- W2004756053 cites W2135353663 @default.
- W2004756053 cites W2137199868 @default.
- W2004756053 cites W2499432330 @default.
- W2004756053 cites W2565473650 @default.
- W2004756053 doi "https://doi.org/10.1098/rsta.1979.0041" @default.
- W2004756053 hasPublicationYear "1979" @default.
- W2004756053 type Work @default.
- W2004756053 sameAs 2004756053 @default.
- W2004756053 citedByCount "81" @default.
- W2004756053 countsByYear W20047560532013 @default.
- W2004756053 countsByYear W20047560532015 @default.
- W2004756053 countsByYear W20047560532016 @default.
- W2004756053 countsByYear W20047560532018 @default.
- W2004756053 countsByYear W20047560532021 @default.
- W2004756053 countsByYear W20047560532023 @default.
- W2004756053 crossrefType "journal-article" @default.
- W2004756053 hasAuthorship W2004756053A5090788005 @default.
- W2004756053 hasConcept C105795698 @default.
- W2004756053 hasConcept C121332964 @default.
- W2004756053 hasConcept C121864883 @default.
- W2004756053 hasConcept C134306372 @default.
- W2004756053 hasConcept C146834321 @default.
- W2004756053 hasConcept C162324750 @default.
- W2004756053 hasConcept C170036204 @default.
- W2004756053 hasConcept C17456955 @default.
- W2004756053 hasConcept C182748727 @default.
- W2004756053 hasConcept C196558001 @default.
- W2004756053 hasConcept C197055811 @default.
- W2004756053 hasConcept C200602138 @default.
- W2004756053 hasConcept C2524010 @default.
- W2004756053 hasConcept C2778513689 @default.
- W2004756053 hasConcept C33923547 @default.
- W2004756053 hasConcept C34447519 @default.
- W2004756053 hasConcept C57691317 @default.
- W2004756053 hasConcept C57879066 @default.
- W2004756053 hasConcept C58626813 @default.
- W2004756053 hasConcept C74650414 @default.
- W2004756053 hasConcept C78045399 @default.
- W2004756053 hasConcept C93779851 @default.
- W2004756053 hasConceptScore W2004756053C105795698 @default.
- W2004756053 hasConceptScore W2004756053C121332964 @default.
- W2004756053 hasConceptScore W2004756053C121864883 @default.
- W2004756053 hasConceptScore W2004756053C134306372 @default.
- W2004756053 hasConceptScore W2004756053C146834321 @default.
- W2004756053 hasConceptScore W2004756053C162324750 @default.
- W2004756053 hasConceptScore W2004756053C170036204 @default.
- W2004756053 hasConceptScore W2004756053C17456955 @default.
- W2004756053 hasConceptScore W2004756053C182748727 @default.
- W2004756053 hasConceptScore W2004756053C196558001 @default.
- W2004756053 hasConceptScore W2004756053C197055811 @default.
- W2004756053 hasConceptScore W2004756053C200602138 @default.
- W2004756053 hasConceptScore W2004756053C2524010 @default.
- W2004756053 hasConceptScore W2004756053C2778513689 @default.
- W2004756053 hasConceptScore W2004756053C33923547 @default.
- W2004756053 hasConceptScore W2004756053C34447519 @default.
- W2004756053 hasConceptScore W2004756053C57691317 @default.
- W2004756053 hasConceptScore W2004756053C57879066 @default.
- W2004756053 hasConceptScore W2004756053C58626813 @default.
- W2004756053 hasConceptScore W2004756053C74650414 @default.
- W2004756053 hasConceptScore W2004756053C78045399 @default.
- W2004756053 hasConceptScore W2004756053C93779851 @default.
- W2004756053 hasIssue "1384" @default.
- W2004756053 hasLocation W20047560531 @default.
- W2004756053 hasOpenAccess W2004756053 @default.
- W2004756053 hasPrimaryLocation W20047560531 @default.
- W2004756053 hasRelatedWork W1487640967 @default.
- W2004756053 hasRelatedWork W153415882 @default.
- W2004756053 hasRelatedWork W2135856271 @default.
- W2004756053 hasRelatedWork W2178949136 @default.