Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004781132> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2004781132 abstract "In a ferromagnetic nanostructure, a domain wall is a transition region that separates two different but uniformly magnetized regions. Moving a domain wall with an electrical current instead of a magnetic field is of great appeal to researchers; it could lead to spin-based devices in which information is stored and processed in domain walls. Such storage, memory, and logic devices could potentially be more flexible, efficient, and scalable. The mechanism underlying this motion is called the spin-transfer torque, in which conduction electrons transfer a spin angular momentum to the local magnetization. The torque comes in an adiabatic and a so-called nonadiabatic part. There is much debate regarding the magnitude [1–5], microscopic origin [6–8], and even the existence [9] of the nonadiabatic term. In a paper in Physical Review Letters, Lutz Heyne and co-workers at the Universitat Konstanz in Germany, along with collaborators in Switzerland, the US, and Germany [10], tell us how they measure the torque with a scheme [11] that involves displacing a single magnetic vortex by electrical current. They find a surprisingly large nonadiabaticity—favorable for spintronic devices based on domain walls—that not only dictates how quickly a domain wall moves but allows it to do so in the absence of applied magnetic fields, even for very small currents. An intuitive phenomenological theory addresses the underlying physics. The Landau-Lifshitz-Gilbert (LLG) equation describes the evolution of magnetization in time: the magnetization vector precesses around any magnetic field that is present, eventually aligning with it as energy dissipates through dampening of the precession. In addition to the magnetization and the magnetic field, two quantities come into play: γ, the gyromagnetic ratio that determines the frequency of precession, and α, the parameter that describes the damping efficiency. As a spin-polarized current flows through a ferromagnet, the traveling spins tend to align with the magnetization. If the local magnetization direction changes, such as in a domain wall, angular momentum conservation requires the spins to exert a torque on the magnetization. This may result in domain-wall motion. This interaction is intricate, and two spin-transfer torque terms had to be incorporated into the LLG equation to describe it [6, 12]. The first term is adiabatic: it describes the effect of spins as they move and adapt to locally varying magnetization. It is an “antidamping” term that is, like standard damping, proportional to α, and contains no free spin-torque parameters. As noted in the paragraph above, the origin of the second term is unfortunately less clear. It has, for instance, been attributed to spin-flip scattering, which prevents the conduction electron spins from fully aligning with the magnetization [6] (hence dubbed “nonadiabatic”). This term introduces β [12], the nonadiabaticity parameter, which is expected to be large for large magnetization gradients or narrow domain walls. The spintronics community is intrigued by both the absolute sizes as well as the ratio of these two terms, as illustrated by the large number of ongoing theoretical and experimental studies. These two terms determine the ease with which domain walls can be pushed along by current pulses." @default.
- W2004781132 created "2016-06-24" @default.
- W2004781132 creator A5059502800 @default.
- W2004781132 creator A5063407810 @default.
- W2004781132 date "2010-10-25" @default.
- W2004781132 modified "2023-09-27" @default.
- W2004781132 title "The alphabet of spin in nanostructures" @default.
- W2004781132 cites W1797173134 @default.
- W2004781132 cites W1964138747 @default.
- W2004781132 cites W1965200851 @default.
- W2004781132 cites W1995378712 @default.
- W2004781132 cites W1998150557 @default.
- W2004781132 cites W2001879930 @default.
- W2004781132 cites W2027055668 @default.
- W2004781132 cites W2030468762 @default.
- W2004781132 cites W2047286053 @default.
- W2004781132 cites W2047754645 @default.
- W2004781132 cites W2048341626 @default.
- W2004781132 cites W2062876005 @default.
- W2004781132 cites W2072229956 @default.
- W2004781132 cites W2165490208 @default.
- W2004781132 cites W2258686155 @default.
- W2004781132 cites W3104453112 @default.
- W2004781132 doi "https://doi.org/10.1103/physics.3.91" @default.
- W2004781132 hasPublicationYear "2010" @default.
- W2004781132 type Work @default.
- W2004781132 sameAs 2004781132 @default.
- W2004781132 citedByCount "2" @default.
- W2004781132 countsByYear W20047811322012 @default.
- W2004781132 countsByYear W20047811322020 @default.
- W2004781132 crossrefType "journal-article" @default.
- W2004781132 hasAuthorship W2004781132A5059502800 @default.
- W2004781132 hasAuthorship W2004781132A5063407810 @default.
- W2004781132 hasBestOaLocation W20047811321 @default.
- W2004781132 hasConcept C112876837 @default.
- W2004781132 hasConcept C121332964 @default.
- W2004781132 hasConcept C138885662 @default.
- W2004781132 hasConcept C171250308 @default.
- W2004781132 hasConcept C186187911 @default.
- W2004781132 hasConcept C192562407 @default.
- W2004781132 hasConcept C26873012 @default.
- W2004781132 hasConcept C41895202 @default.
- W2004781132 hasConcept C42704618 @default.
- W2004781132 hasConcept C97355855 @default.
- W2004781132 hasConceptScore W2004781132C112876837 @default.
- W2004781132 hasConceptScore W2004781132C121332964 @default.
- W2004781132 hasConceptScore W2004781132C138885662 @default.
- W2004781132 hasConceptScore W2004781132C171250308 @default.
- W2004781132 hasConceptScore W2004781132C186187911 @default.
- W2004781132 hasConceptScore W2004781132C192562407 @default.
- W2004781132 hasConceptScore W2004781132C26873012 @default.
- W2004781132 hasConceptScore W2004781132C41895202 @default.
- W2004781132 hasConceptScore W2004781132C42704618 @default.
- W2004781132 hasConceptScore W2004781132C97355855 @default.
- W2004781132 hasLocation W20047811321 @default.
- W2004781132 hasOpenAccess W2004781132 @default.
- W2004781132 hasPrimaryLocation W20047811321 @default.
- W2004781132 hasRelatedWork W1692056615 @default.
- W2004781132 hasRelatedWork W1969813393 @default.
- W2004781132 hasRelatedWork W2054385117 @default.
- W2004781132 hasRelatedWork W2067604026 @default.
- W2004781132 hasRelatedWork W2188099174 @default.
- W2004781132 hasRelatedWork W2469741935 @default.
- W2004781132 hasRelatedWork W2495645445 @default.
- W2004781132 hasRelatedWork W2557234885 @default.
- W2004781132 hasRelatedWork W382564717 @default.
- W2004781132 hasRelatedWork W4234523713 @default.
- W2004781132 hasVolume "3" @default.
- W2004781132 isParatext "false" @default.
- W2004781132 isRetracted "false" @default.
- W2004781132 magId "2004781132" @default.
- W2004781132 workType "article" @default.