Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004796972> ?p ?o ?g. }
- W2004796972 endingPage "846" @default.
- W2004796972 startingPage "836" @default.
- W2004796972 abstract "Urban flood control is a crucial task, which commonly faces fast rising peak flows resulting from urbanization. To mitigate future flood damages, it is imperative to construct an on-line accurate model to forecast inundation levels during flood periods. The Yu–Cheng Pumping Station located in Taipei City of Taiwan is selected as the study area. Firstly, historical hydrologic data are fully explored by statistical techniques to identify the time span of rainfall affecting the rise of the water level in the floodwater storage pond (FSP) at the pumping station. Secondly, effective factors (rainfall stations) that significantly affect the FSP water level are extracted by the Gamma test (GT). Thirdly, one static artificial neural network (ANN) (backpropagation neural network-BPNN) and two dynamic ANNs (Elman neural network-Elman NN; nonlinear autoregressive network with exogenous inputs-NARX network) are used to construct multi-step-ahead FSP water level forecast models through two scenarios, in which scenario I adopts rainfall and FSP water level data as model inputs while scenario II adopts only rainfall data as model inputs. The results demonstrate that the GT can efficiently identify the effective rainfall stations as important inputs to the three ANNs; the recurrent connections from the output layer (NARX network) impose more effects on the output than those of the hidden layer (Elman NN) do; and the NARX network performs the best in real-time forecasting. The NARX network produces coefficients of efficiency within 0.9–0.7 (scenario I) and 0.7–0.5 (scenario II) in the testing stages for 10–60-min-ahead forecasts accordingly. This study suggests that the proposed NARX models can be valuable and beneficial to the government authority for urban flood control." @default.
- W2004796972 created "2016-06-24" @default.
- W2004796972 creator A5031061311 @default.
- W2004796972 creator A5031974261 @default.
- W2004796972 creator A5035120371 @default.
- W2004796972 creator A5064512750 @default.
- W2004796972 creator A5089700077 @default.
- W2004796972 date "2014-09-01" @default.
- W2004796972 modified "2023-10-05" @default.
- W2004796972 title "Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control" @default.
- W2004796972 cites W1498436455 @default.
- W2004796972 cites W1506467492 @default.
- W2004796972 cites W1963830704 @default.
- W2004796972 cites W1967429206 @default.
- W2004796972 cites W1973676661 @default.
- W2004796972 cites W1975268814 @default.
- W2004796972 cites W1977664222 @default.
- W2004796972 cites W1986421176 @default.
- W2004796972 cites W1989137448 @default.
- W2004796972 cites W2001593107 @default.
- W2004796972 cites W2004012112 @default.
- W2004796972 cites W2010823344 @default.
- W2004796972 cites W2015789462 @default.
- W2004796972 cites W2028072219 @default.
- W2004796972 cites W2032734256 @default.
- W2004796972 cites W2033904036 @default.
- W2004796972 cites W2034159055 @default.
- W2004796972 cites W2055038109 @default.
- W2004796972 cites W2056762088 @default.
- W2004796972 cites W2078276613 @default.
- W2004796972 cites W2080106723 @default.
- W2004796972 cites W2083763170 @default.
- W2004796972 cites W2086293585 @default.
- W2004796972 cites W2095046243 @default.
- W2004796972 cites W2095623344 @default.
- W2004796972 cites W2101706954 @default.
- W2004796972 cites W2105891670 @default.
- W2004796972 cites W2110485445 @default.
- W2004796972 cites W2128716097 @default.
- W2004796972 cites W2131495061 @default.
- W2004796972 cites W2141786991 @default.
- W2004796972 cites W2153626145 @default.
- W2004796972 cites W2158260560 @default.
- W2004796972 cites W2158638608 @default.
- W2004796972 cites W2166210698 @default.
- W2004796972 doi "https://doi.org/10.1016/j.jhydrol.2014.06.013" @default.
- W2004796972 hasPublicationYear "2014" @default.
- W2004796972 type Work @default.
- W2004796972 sameAs 2004796972 @default.
- W2004796972 citedByCount "175" @default.
- W2004796972 countsByYear W20047969722015 @default.
- W2004796972 countsByYear W20047969722016 @default.
- W2004796972 countsByYear W20047969722017 @default.
- W2004796972 countsByYear W20047969722018 @default.
- W2004796972 countsByYear W20047969722019 @default.
- W2004796972 countsByYear W20047969722020 @default.
- W2004796972 countsByYear W20047969722021 @default.
- W2004796972 countsByYear W20047969722022 @default.
- W2004796972 countsByYear W20047969722023 @default.
- W2004796972 crossrefType "journal-article" @default.
- W2004796972 hasAuthorship W2004796972A5031061311 @default.
- W2004796972 hasAuthorship W2004796972A5031974261 @default.
- W2004796972 hasAuthorship W2004796972A5035120371 @default.
- W2004796972 hasAuthorship W2004796972A5064512750 @default.
- W2004796972 hasAuthorship W2004796972A5089700077 @default.
- W2004796972 hasConcept C105795698 @default.
- W2004796972 hasConcept C1284942 @default.
- W2004796972 hasConcept C147168706 @default.
- W2004796972 hasConcept C154945302 @default.
- W2004796972 hasConcept C155032097 @default.
- W2004796972 hasConcept C159877910 @default.
- W2004796972 hasConcept C166957645 @default.
- W2004796972 hasConcept C205649164 @default.
- W2004796972 hasConcept C33923547 @default.
- W2004796972 hasConcept C39432304 @default.
- W2004796972 hasConcept C41008148 @default.
- W2004796972 hasConcept C42536954 @default.
- W2004796972 hasConcept C50644808 @default.
- W2004796972 hasConcept C539955404 @default.
- W2004796972 hasConcept C58640448 @default.
- W2004796972 hasConcept C74256435 @default.
- W2004796972 hasConceptScore W2004796972C105795698 @default.
- W2004796972 hasConceptScore W2004796972C1284942 @default.
- W2004796972 hasConceptScore W2004796972C147168706 @default.
- W2004796972 hasConceptScore W2004796972C154945302 @default.
- W2004796972 hasConceptScore W2004796972C155032097 @default.
- W2004796972 hasConceptScore W2004796972C159877910 @default.
- W2004796972 hasConceptScore W2004796972C166957645 @default.
- W2004796972 hasConceptScore W2004796972C205649164 @default.
- W2004796972 hasConceptScore W2004796972C33923547 @default.
- W2004796972 hasConceptScore W2004796972C39432304 @default.
- W2004796972 hasConceptScore W2004796972C41008148 @default.
- W2004796972 hasConceptScore W2004796972C42536954 @default.
- W2004796972 hasConceptScore W2004796972C50644808 @default.
- W2004796972 hasConceptScore W2004796972C539955404 @default.
- W2004796972 hasConceptScore W2004796972C58640448 @default.
- W2004796972 hasConceptScore W2004796972C74256435 @default.
- W2004796972 hasLocation W20047969721 @default.