Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004833944> ?p ?o ?g. }
- W2004833944 endingPage "427" @default.
- W2004833944 startingPage "423" @default.
- W2004833944 abstract "A 29-YEAR-OLD MALE (180 cm, 65.8 kg) with a bicuspid aortic valve presented for an aortic valve replacement (AVR). Preoperative two-dimensional (2D) transthoracic echocardiography (TTE) demonstrated preserved left ventricular function along with a resting maximum aortic valve (AV) velocity of 4.33 m/s and mean pressure gradient of 41 mmHg. This increased to a maximum AV velocity of 5.56 m/s and mean gradient of 65 mmHg when stressed with dobutamine. Using the continuity equation (CE), effective orifice area (EOA) of the AV was calculated to be 0.9 cm2 (0.52 cm2/m2) given a left ventricular outflow tract (LVOT) diameter of 2.3 cm, velocity time integral of the LVOT (VTIlvot) of 23.6 cm and velocity time integral of aortic valve (VTIav) of 107 cm (Fig 1). Trace-to-mild aortic regurgitation was noted. Intraoperative 2D transesophageal echocardiography (TEE) was performed before initiation of cardiopulmonary bypass. A doming bicuspid valve was observed with an eccentric and turbulent aortic outflow jet. Maximum velocity of the jet through the valve was observed to be 4.0 m/s and the mean pressure gradient was 40 mmHg (Fig 2). The LVOT diameter measured 2.4 cm, the VTIlvot was 14.4 cm and the VTIav was 76.1 cm with a corresponding calculated effective orifice area of 0.86 cm2. The 2D planimetered anatomic valve area ranged between 1.53-2.27 cm2. The smallest value of 1.53 cm2 was considered most accurate. The echocardiographic challenge in this case is to ascertain how a bicuspid aortic valve with an anatomic valve area that is almost normal without significant regurgitation was able to generate, at preoperative rest, peak velocity of more than 4 m/s with a stenotic effective valve area calculated with the CE of<1 cm2. The explanation of this e-challenge can be found in understanding the implications of three factors: (1) The influence of jet eccentricity on flow contraction as blood passes through the valve, (2) the importance of three-dimensional (3D) LVOT geometry, and (3) the limitations of planimetry when measuring an anatomic orifice area. Measurement of the EOA, rather than the anatomic area, is considered standard in gauging the severity of aortic stenosis, because it is the primary predictor in clinical outcomes.1Baumgartner H. Hung J. Bermejo J. et al.Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice.J Am Soc Echocardiogr. 2009; 22 (quiz 101-102): 1-23Abstract Full Text Full Text PDF PubMed Scopus (1285) Google Scholar Laws of hydraulics state that as a liquid moves through an orifice, the flow contracts in a region termed the “vena contracta”. This phenomenon originally was described by Evangelista Torricelli in the 1600s who, for point of reference, was a pupil of Galileo Galilei.2Massey B.S. Ward-Smith J. The Principles of Fluid Motion.7th ed. Stanley Thornes Ltd, Cheltenham, England1998Google Scholar The cross-sectional area of the vena contracta is the EOA.1Baumgartner H. Hung J. Bermejo J. et al.Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice.J Am Soc Echocardiogr. 2009; 22 (quiz 101-102): 1-23Abstract Full Text Full Text PDF PubMed Scopus (1285) Google Scholar, 3Garcia D. Pibarot P. Landry C. et al.Estimation of aortic valve effective orifice area by Doppler echocardiography: Effects of valve inflow shape and flow rate.J Am Soc Echocardiogr. 2004; 17: 756-765Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar The ratio of the EOA to the anatomic area is termed the “contraction coefficient” (CC).3Garcia D. Pibarot P. Landry C. et al.Estimation of aortic valve effective orifice area by Doppler echocardiography: Effects of valve inflow shape and flow rate.J Am Soc Echocardiogr. 2004; 17: 756-765Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar, 4Donal E. Novaro G.M. Deserrano D. et al.Planimetric assessment of anatomic valve area overestimates effective orifice area in bicuspid aortic stenosis.J Am Soc Echocardiogr. 2005; 18: 1392-1398Abstract Full Text Full Text PDF PubMed Scopus (38) Google Scholar The 3D anatomic orifice acts as a nozzle affecting the degree of flow contraction.5Gilon D. Cape E.G. Handschumacher M.D. et al.Effect of three-dimensional valve shape on the hemodynamics of aortic stenosis: Three-dimensional echocardiographic stereolithography and patient studies.J Am Coll Card. 2002; 40: 1479-1486Abstract Full Text Full Text PDF PubMed Scopus (103) Google Scholar The CC for an orifice ranges from 0.6 to 1 depending on the orifice’s 3D shape. In vitro, orifices that are made from flat plates have a CC closer to 0.6; in contrast, orifices that are tapered have a CC closer to 1.3Garcia D. Pibarot P. Landry C. et al.Estimation of aortic valve effective orifice area by Doppler echocardiography: Effects of valve inflow shape and flow rate.J Am Soc Echocardiogr. 2004; 17: 756-765Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar Patients with bicuspid valves often have eccentric jets in which the large anterior leaflet extends above the small posterior or noncoronary leaflet directing the jet toward the aortic wall.3Garcia D. Pibarot P. Landry C. et al.Estimation of aortic valve effective orifice area by Doppler echocardiography: Effects of valve inflow shape and flow rate.J Am Soc Echocardiogr. 2004; 17: 756-765Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar, 6Sigovan M. Hope M.D. Dyverfeldt P. Saloner D. Comparison of four-dimensional flow parameters for quantification of flow eccentricity in the ascending aorta.J Magn Reson Imaging. 2011; 34: 1226-1230Crossref PubMed Scopus (94) Google Scholar, 7VanAuker M.D. Chandra M. Shirani J. Strom J.A. Jet eccentricity: A misleading source of agreement between Doppler/catheter pressure gradients in aortic stenosis.J Am Soc Echocardiogr. 2001; 14: 853-862Abstract Full Text Full Text PDF PubMed Scopus (26) Google Scholar The eccentricity of the jet influences the degree of flow contraction.3Garcia D. Pibarot P. Landry C. et al.Estimation of aortic valve effective orifice area by Doppler echocardiography: Effects of valve inflow shape and flow rate.J Am Soc Echocardiogr. 2004; 17: 756-765Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar, 4Donal E. Novaro G.M. Deserrano D. et al.Planimetric assessment of anatomic valve area overestimates effective orifice area in bicuspid aortic stenosis.J Am Soc Echocardiogr. 2005; 18: 1392-1398Abstract Full Text Full Text PDF PubMed Scopus (38) Google Scholar, 7VanAuker M.D. Chandra M. Shirani J. Strom J.A. Jet eccentricity: A misleading source of agreement between Doppler/catheter pressure gradients in aortic stenosis.J Am Soc Echocardiogr. 2001; 14: 853-862Abstract Full Text Full Text PDF PubMed Scopus (26) Google Scholar, 8Richards K.E. Deserranno D. Donal E. Greenberg N.L. et al.Influence of structural geometry on the severity of bicuspid aortic stenosis.Am J Physiol Heart Circ Physiol. 2004; 287: H1410-H1416Crossref PubMed Scopus (41) Google Scholar, 9Richards K.E. Desserranno D. Greenberg N.L. et al.Effect of jet eccentricity on functional severity of congenital aortic stenosis.J Am Coll Card. 2002; 39: 420Abstract Full Text PDF PubMed Google Scholar It has been shown in vitro with computer models that as the eccentric flow increases the CC decreases4Donal E. Novaro G.M. Deserrano D. et al.Planimetric assessment of anatomic valve area overestimates effective orifice area in bicuspid aortic stenosis.J Am Soc Echocardiogr. 2005; 18: 1392-1398Abstract Full Text Full Text PDF PubMed Scopus (38) Google Scholar, 7VanAuker M.D. Chandra M. Shirani J. Strom J.A. Jet eccentricity: A misleading source of agreement between Doppler/catheter pressure gradients in aortic stenosis.J Am Soc Echocardiogr. 2001; 14: 853-862Abstract Full Text Full Text PDF PubMed Scopus (26) Google Scholar, 9Richards K.E. Desserranno D. Greenberg N.L. et al.Effect of jet eccentricity on functional severity of congenital aortic stenosis.J Am Coll Card. 2002; 39: 420Abstract Full Text PDF PubMed Google Scholar (Fig 3, Fig 4). The streamlines on the posterior aspect of the jet collide with the wall and are deflected sooner than streamlines on the anterior aspect of the jet. The physical presence of the aortic wall physically constricts the vena contracta.7VanAuker M.D. Chandra M. Shirani J. Strom J.A. Jet eccentricity: A misleading source of agreement between Doppler/catheter pressure gradients in aortic stenosis.J Am Soc Echocardiogr. 2001; 14: 853-862Abstract Full Text Full Text PDF PubMed Scopus (26) Google Scholar Clinically in vivo, the calculated EOA in patients with tricuspid aortic valves and central jets correlates better with the anatomic orifice area than the EOA in patients with bicuspid valves and eccentric jets.4Donal E. Novaro G.M. Deserrano D. et al.Planimetric assessment of anatomic valve area overestimates effective orifice area in bicuspid aortic stenosis.J Am Soc Echocardiogr. 2005; 18: 1392-1398Abstract Full Text Full Text PDF PubMed Scopus (38) Google Scholar The patient presented in this case had a bicuspid valve with an eccentric jet of approximately 20-25 degrees (Fig 2). Based on the available data from computer modeling, this degree of eccentricity roughly would correspond to a CC of ≈0.7.4Donal E. Novaro G.M. Deserrano D. et al.Planimetric assessment of anatomic valve area overestimates effective orifice area in bicuspid aortic stenosis.J Am Soc Echocardiogr. 2005; 18: 1392-1398Abstract Full Text Full Text PDF PubMed Scopus (38) Google ScholarFig 4Relationship between contraction coefficient and jet eccentricity. Computational results from computer model of eccentric jet demonstrating the relationship of the jet eccentricity (x axis) to the contraction coefficient (y axis). Based on this plot, a contraction coefficient of approximately 0.7 was chosen for the current case given the estimated 20-25 degrees of eccentricity. Reprinted with permission from Garcia et al [3Garcia D. Pibarot P. Landry C. et al.Estimation of aortic valve effective orifice area by Doppler echocardiography: Effects of valve inflow shape and flow rate.J Am Soc Echocardiogr. 2004; 17: 756-765Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar].View Large Image Figure ViewerDownload Hi-res image Download (PPT) The American Society of Echocardiography guidelines recommend, when calculating the EOA using the continuity equation, to make the assumption that the LVOT is a circle when measuring the LVOT stroke volume.1Baumgartner H. Hung J. Bermejo J. et al.Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice.J Am Soc Echocardiogr. 2009; 22 (quiz 101-102): 1-23Abstract Full Text Full Text PDF PubMed Scopus (1285) Google Scholar However, the platonic form of a circle can rarely, if ever, be found in nature. Recent 3D evaluation of the LVOT has shown repeatedly that its cross-sectional shape more closely resembles an ellipse.10Gaspar T. Adawi S. Sachner R. et al.Three-dimensional imaging of the left ventricular outflow tract: Impact on aortic valve area estimation by the continuity equation.J Am Soc Echocardiogr. 2012; 25: 749-757Abstract Full Text Full Text PDF PubMed Scopus (84) Google Scholar, 11Mahmood F. Swaminathan M. Aortic stenosis and 3-dimensional echocardiography: the saga continues.J Cardiothorac Vasc Anesth. 2013; 27: 192-193Abstract Full Text Full Text PDF PubMed Scopus (4) Google Scholar, 12Saitoh T. Shiota M. Izumo M. et al.Comparison of left ventricular outflow geometry and aortic valve area in patients with aortic stenosis by 2-dimensional versus 3-dimensional echocardiography.Am J Cardiol. 2012; 109: 1626-1631Abstract Full Text Full Text PDF PubMed Scopus (80) Google Scholar, 13Jainandunsing J.S. Shahul S.S. Moderate-to-severe aortic stenosis and three-dimensional echocardiography.J Cardiothorac Vasc Anesth. 2013; 27: 190-191Abstract Full Text Full Text PDF PubMed Scopus (2) Google Scholar One prospective study of 50 patients found that the assumption that the LVOT is a circle underestimates the cross-section area on average by 17%, thus overestimating the severity of aortic stenosis.10Gaspar T. Adawi S. Sachner R. et al.Three-dimensional imaging of the left ventricular outflow tract: Impact on aortic valve area estimation by the continuity equation.J Am Soc Echocardiogr. 2012; 25: 749-757Abstract Full Text Full Text PDF PubMed Scopus (84) Google Scholar The 3D scalloped configuration of the AV leaflets and its implications for blood flow, beautifully sketched by Leonardo da Vinci, has long been appreciated.14Shoja M.M. Agutter P.S. Loukas M. et al.Leonardo da Vinci's studies of the heart.Int J Cardiol. 2013; 167: 1126-1133Abstract Full Text Full Text PDF PubMed Scopus (26) Google Scholar, 15Keele K.D. Leonardo da Vinci on Movement of The Heart and Blood. Harvey and Blythe LTD, London1952Google Scholar This multidimensional and hydraulically important aspect of the valve is lost in a simplified en face 2D projection. Obtaining the correct plane orthogonal to the axis of the orifice, which in the case of a doming bicuspid valve is not necessarily the same axis as the aortic annulus, can be quite challenging with 2D echocardiography. Hence, the plane used for the en face view of the AV frequently, cuts the valve obliquely, resulting in an overestimation of the anatomic area. With 3D TEE imaging, 2D planes can be cropped carefully to more precisely planimeter the leaflet tips, avoiding this error.16Kim H. Bergman R. Matyal R. et al.Three-dimensional echocardiography and en face views of the aortic valve: Technical communication.J Cardiothorac Vasc Anesth. 2013; 27: 376-380Abstract Full Text Full Text PDF PubMed Scopus (11) Google Scholar Poorer resolution that often accompanies 3D imaging occasionally can be problematic. This technical limitation can be especially troublesome in the presence of smaller orifices with significant calcification. Still, when this newer 3D approach is compared formally with conventional planimetry with 2D echocardiography, the anatomic orifices that are measured are predictably smaller.17Furukawa A. Abe Y. Tanaka C. et al.Comparison of two-dimensional and real-time three-dimensional transesophageal echocardiography in the assessment of aortic valve area.J Cardiol. 2012; 59: 337-343Abstract Full Text Full Text PDF PubMed Scopus (14) Google Scholar In the case at hand, the team taking care of the patient did not have a 3D TEE probe. The result was a wide range of values for the anatomic orifice. The most accurate of these values was considered to be the smallest value for reasons discussed, approximately 1.5 cm2. The initial prebypass EOA of approximately 0.86 cm2 was calculated by 2D TEE using the continuity equation as follows:EOA=[(LVOTdiameter2×0.785)×VTIlvot]/VTIAVEOA=[(2.4cm×2.4cm×0.785)×14.4cm]/76cm=0.86cm2" @default.
- W2004833944 created "2016-06-24" @default.
- W2004833944 creator A5009327316 @default.
- W2004833944 creator A5013644644 @default.
- W2004833944 creator A5014062369 @default.
- W2004833944 creator A5051112916 @default.
- W2004833944 creator A5073478384 @default.
- W2004833944 date "2014-04-01" @default.
- W2004833944 modified "2023-09-25" @default.
- W2004833944 title "The Echocardiographic Evaluation of a Bicuspid Aortic Valve: The Effect of Jet Eccentricity and Left Ventricular Outflow Tract Geometry on the Effective Orifice Area" @default.
- W2004833944 cites W147267265 @default.
- W2004833944 cites W1975218984 @default.
- W2004833944 cites W1981967299 @default.
- W2004833944 cites W1986308387 @default.
- W2004833944 cites W1997859168 @default.
- W2004833944 cites W2045447985 @default.
- W2004833944 cites W2052090471 @default.
- W2004833944 cites W2052430845 @default.
- W2004833944 cites W2086849242 @default.
- W2004833944 cites W2088767589 @default.
- W2004833944 cites W2153239275 @default.
- W2004833944 cites W2160785733 @default.
- W2004833944 cites W2162219478 @default.
- W2004833944 cites W2166965184 @default.
- W2004833944 cites W2170024274 @default.
- W2004833944 doi "https://doi.org/10.1053/j.jvca.2013.10.009" @default.
- W2004833944 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24485562" @default.
- W2004833944 hasPublicationYear "2014" @default.
- W2004833944 type Work @default.
- W2004833944 sameAs 2004833944 @default.
- W2004833944 citedByCount "7" @default.
- W2004833944 countsByYear W20048339442014 @default.
- W2004833944 countsByYear W20048339442017 @default.
- W2004833944 countsByYear W20048339442019 @default.
- W2004833944 countsByYear W20048339442020 @default.
- W2004833944 countsByYear W20048339442021 @default.
- W2004833944 crossrefType "journal-article" @default.
- W2004833944 hasAuthorship W2004833944A5009327316 @default.
- W2004833944 hasAuthorship W2004833944A5013644644 @default.
- W2004833944 hasAuthorship W2004833944A5014062369 @default.
- W2004833944 hasAuthorship W2004833944A5051112916 @default.
- W2004833944 hasAuthorship W2004833944A5073478384 @default.
- W2004833944 hasBestOaLocation W20048339441 @default.
- W2004833944 hasConcept C105702510 @default.
- W2004833944 hasConcept C111368507 @default.
- W2004833944 hasConcept C119947313 @default.
- W2004833944 hasConcept C121332964 @default.
- W2004833944 hasConcept C126322002 @default.
- W2004833944 hasConcept C127313418 @default.
- W2004833944 hasConcept C164705383 @default.
- W2004833944 hasConcept C17744445 @default.
- W2004833944 hasConcept C190538878 @default.
- W2004833944 hasConcept C194242075 @default.
- W2004833944 hasConcept C199539241 @default.
- W2004833944 hasConcept C2524010 @default.
- W2004833944 hasConcept C2777361368 @default.
- W2004833944 hasConcept C2780714102 @default.
- W2004833944 hasConcept C2781355080 @default.
- W2004833944 hasConcept C2910672364 @default.
- W2004833944 hasConcept C33923547 @default.
- W2004833944 hasConcept C57879066 @default.
- W2004833944 hasConcept C71924100 @default.
- W2004833944 hasConcept C86132830 @default.
- W2004833944 hasConceptScore W2004833944C105702510 @default.
- W2004833944 hasConceptScore W2004833944C111368507 @default.
- W2004833944 hasConceptScore W2004833944C119947313 @default.
- W2004833944 hasConceptScore W2004833944C121332964 @default.
- W2004833944 hasConceptScore W2004833944C126322002 @default.
- W2004833944 hasConceptScore W2004833944C127313418 @default.
- W2004833944 hasConceptScore W2004833944C164705383 @default.
- W2004833944 hasConceptScore W2004833944C17744445 @default.
- W2004833944 hasConceptScore W2004833944C190538878 @default.
- W2004833944 hasConceptScore W2004833944C194242075 @default.
- W2004833944 hasConceptScore W2004833944C199539241 @default.
- W2004833944 hasConceptScore W2004833944C2524010 @default.
- W2004833944 hasConceptScore W2004833944C2777361368 @default.
- W2004833944 hasConceptScore W2004833944C2780714102 @default.
- W2004833944 hasConceptScore W2004833944C2781355080 @default.
- W2004833944 hasConceptScore W2004833944C2910672364 @default.
- W2004833944 hasConceptScore W2004833944C33923547 @default.
- W2004833944 hasConceptScore W2004833944C57879066 @default.
- W2004833944 hasConceptScore W2004833944C71924100 @default.
- W2004833944 hasConceptScore W2004833944C86132830 @default.
- W2004833944 hasIssue "2" @default.
- W2004833944 hasLocation W20048339441 @default.
- W2004833944 hasOpenAccess W2004833944 @default.
- W2004833944 hasPrimaryLocation W20048339441 @default.
- W2004833944 hasRelatedWork W153738355 @default.
- W2004833944 hasRelatedWork W1975755581 @default.
- W2004833944 hasRelatedWork W1976542179 @default.
- W2004833944 hasRelatedWork W2002828837 @default.
- W2004833944 hasRelatedWork W2004833944 @default.
- W2004833944 hasRelatedWork W2168403104 @default.
- W2004833944 hasRelatedWork W2512033725 @default.
- W2004833944 hasRelatedWork W3008631307 @default.
- W2004833944 hasRelatedWork W3204260488 @default.
- W2004833944 hasRelatedWork W4250049887 @default.
- W2004833944 hasVolume "28" @default.