Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004849950> ?p ?o ?g. }
- W2004849950 endingPage "143" @default.
- W2004849950 startingPage "130" @default.
- W2004849950 abstract "Abstract Emissions of nitrogen oxides (NOx) and, subsequently, atmospheric levels of nitrogen dioxide (NO2) have decreased over the U.S. due to a combination of environmental policies and technological change. Consequently, NO2 levels have decreased by 30–40% in the last decade. We quantify NO2 trends (2005–2013) over the U.S. using surface measurements from the U.S. Environmental Protection Agency (EPA) Air Quality System (AQS) and an improved tropospheric NO2 vertical column density (VCD) data product from the Ozone Monitoring Instrument (OMI) on the Aura satellite. We demonstrate that the current OMI NO2 algorithm is of sufficient maturity to allow a favorable correspondence of trends and variations in OMI and AQS data. Our trend model accounts for the non-linear dependence of NO2 concentration on emissions associated with the seasonal variation of the chemical lifetime, including the change in the amplitude of the seasonal cycle associated with the significant change in NOx emissions that occurred over the last decade. The direct relationship between observations and emissions becomes more robust when one accounts for these non-linear dependencies. We improve the OMI NO2 standard retrieval algorithm and, subsequently, the data product by using monthly vertical concentration profiles, a required algorithm input, from a high-resolution chemistry and transport model (CTM) simulation with varying emissions (2005–2013). The impact of neglecting the time-dependence of the profiles leads to errors in trend estimation, particularly in regions where emissions have changed substantially. For example, trends calculated from retrievals based on time-dependent profiles offer 18% more instances of significant trends and up to 15% larger total NO2 reduction versus the results based on profiles for 2005. Using a CTM, we explore the theoretical relation of the trends estimated from NO2 VCDs to those estimated from ground-level concentrations. The model-simulated trends in VCDs strongly correlate with those estimated from surface concentrations (r = 0.83, N = 355). We then explore the observed correspondence of trends estimated from OMI and AQS data. We find a significant, but slightly weaker, correspondence (i.e., r = 0.68, N = 208) than predicted by the model and discuss some of the important factors affecting the relationship, including known problems (e.g., NOz interferents) associated with the AQS data. This significant correspondence gives confidence in trend and surface concentration estimates from OMI VCDs for locations, such as the majority of the U.S. and globe, that are not covered by surface monitoring networks. Using our improved trend model and our enhanced OMI data product, we find that both OMI and AQS data show substantial downward trends from 2005 to 2013, with an average reduction of 38% for each over the U.S. The annual reduction rates inferred from OMI and AQS measurements are larger (−4.8 ± 1.9%/yr, −3.7 ± 1.5%/yr) from 2005 to 2008 than 2010 to 2013 (−1.2 ± 1.2%/yr, −2.1 ± 1.4%/yr). We quantify NO2 trends for major U.S. cities and power plants; the latter suggest larger negative trend (−4.0 ± 1.5%/yr) between 2005 and 2008 and smaller or insignificant changes (−0.5 ± 1.2%/yr) during 2010–2013." @default.
- W2004849950 created "2016-06-24" @default.
- W2004849950 creator A5014046469 @default.
- W2004849950 creator A5023842076 @default.
- W2004849950 creator A5042983625 @default.
- W2004849950 creator A5069206751 @default.
- W2004849950 creator A5075829722 @default.
- W2004849950 creator A5078830084 @default.
- W2004849950 creator A5080587144 @default.
- W2004849950 date "2015-06-01" @default.
- W2004849950 modified "2023-10-16" @default.
- W2004849950 title "U.S. NO2 trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI)" @default.
- W2004849950 cites W1500371118 @default.
- W2004849950 cites W1564783508 @default.
- W2004849950 cites W1592514828 @default.
- W2004849950 cites W1804144495 @default.
- W2004849950 cites W1963575560 @default.
- W2004849950 cites W1976174557 @default.
- W2004849950 cites W1978779625 @default.
- W2004849950 cites W1979393401 @default.
- W2004849950 cites W1980541690 @default.
- W2004849950 cites W1983751821 @default.
- W2004849950 cites W1984090308 @default.
- W2004849950 cites W1986302701 @default.
- W2004849950 cites W1991104515 @default.
- W2004849950 cites W1992281871 @default.
- W2004849950 cites W1992450374 @default.
- W2004849950 cites W1994546967 @default.
- W2004849950 cites W2001010344 @default.
- W2004849950 cites W2001469987 @default.
- W2004849950 cites W2010963393 @default.
- W2004849950 cites W2015639118 @default.
- W2004849950 cites W2027404493 @default.
- W2004849950 cites W2028832574 @default.
- W2004849950 cites W2031738873 @default.
- W2004849950 cites W2032394781 @default.
- W2004849950 cites W2036980759 @default.
- W2004849950 cites W2045084013 @default.
- W2004849950 cites W2045412781 @default.
- W2004849950 cites W2048420811 @default.
- W2004849950 cites W2051416171 @default.
- W2004849950 cites W2061540829 @default.
- W2004849950 cites W2066453350 @default.
- W2004849950 cites W2068774847 @default.
- W2004849950 cites W2069269698 @default.
- W2004849950 cites W2070533532 @default.
- W2004849950 cites W2072900590 @default.
- W2004849950 cites W2078316433 @default.
- W2004849950 cites W2079261198 @default.
- W2004849950 cites W2082678423 @default.
- W2004849950 cites W2084281396 @default.
- W2004849950 cites W2086402093 @default.
- W2004849950 cites W2090390389 @default.
- W2004849950 cites W2091782373 @default.
- W2004849950 cites W2102873395 @default.
- W2004849950 cites W2111403398 @default.
- W2004849950 cites W2112772401 @default.
- W2004849950 cites W2115147528 @default.
- W2004849950 cites W2115753020 @default.
- W2004849950 cites W2115775664 @default.
- W2004849950 cites W2119774937 @default.
- W2004849950 cites W2119961331 @default.
- W2004849950 cites W2122804368 @default.
- W2004849950 cites W2124234307 @default.
- W2004849950 cites W2125142335 @default.
- W2004849950 cites W2125444255 @default.
- W2004849950 cites W2126141155 @default.
- W2004849950 cites W2129437219 @default.
- W2004849950 cites W2133458197 @default.
- W2004849950 cites W2138756490 @default.
- W2004849950 cites W2139977932 @default.
- W2004849950 cites W2144898896 @default.
- W2004849950 cites W2147331530 @default.
- W2004849950 cites W2152490090 @default.
- W2004849950 cites W2153184054 @default.
- W2004849950 cites W2156033499 @default.
- W2004849950 cites W2158066792 @default.
- W2004849950 cites W2161621332 @default.
- W2004849950 cites W2163350766 @default.
- W2004849950 cites W2164501544 @default.
- W2004849950 cites W2165242333 @default.
- W2004849950 cites W2166148764 @default.
- W2004849950 cites W2166222414 @default.
- W2004849950 cites W2168165748 @default.
- W2004849950 cites W2169262944 @default.
- W2004849950 cites W2329577636 @default.
- W2004849950 cites W4211115670 @default.
- W2004849950 doi "https://doi.org/10.1016/j.atmosenv.2015.03.055" @default.
- W2004849950 hasPublicationYear "2015" @default.
- W2004849950 type Work @default.
- W2004849950 sameAs 2004849950 @default.
- W2004849950 citedByCount "153" @default.
- W2004849950 countsByYear W20048499502015 @default.
- W2004849950 countsByYear W20048499502016 @default.
- W2004849950 countsByYear W20048499502017 @default.
- W2004849950 countsByYear W20048499502018 @default.
- W2004849950 countsByYear W20048499502019 @default.
- W2004849950 countsByYear W20048499502020 @default.