Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004877205> ?p ?o ?g. }
- W2004877205 abstract "Structural foams are widely used as energy absorbing materials for impact protection. The microstructure of these materials is often modeled as a periodic lattice of elastic beams. In previous studies [High strain compression of random open cell foams, MMC2001, San Diego, 2001; Int. J. Solids Struct. 39 (2001) 3599; Determination de la charge de flambement dans un materiau cellulaire periodique, XVme Congres Francais de Mecanique, Nancy, 2001; Scale effects in high strain compression of periodic open cell foams, ICTAM, 2000], a tetrakaidecahedral foam unit cell geometry was considered. The corresponding macroscopic buckling yield surface, defined as the first instability of the periodic solution, for proportional loading paths was numerically computed using finite element. In addition, for uniaxial compression, the post-buckling response has been computed and exhibits the well-known plateau regime of foam materials. In reality however, imperfections always arise during the foaming process. This leads to a random distribution of the constitutive material at cell edges, which modifies the material response and especially the plateau stress. If the microstructure were modeled as a random network of elastic beams [Eur. J. Mech. A/Solids 11 (1992) 585], the concept of buckling yield surface would not apply, and the stress level of the plateau could not be determined in this way. Some authors have carried out time consuming incremental finite element simulations on these random networks, in order to get the plateau region behavior. In our study, we have applied the molecular dynamics method to this problem. In order to illustrate our approach, we have considered a square network of elastic beams defined by a cross pattern, in which the material description has been randomly defined. The boundary conditions applied on the cell are strain-controlled. The elastic energy of each beam can be expressed in terms of the displacements of its ends. Therefore, total energy can be expressed in terms of the displacements of the lattice nodes U. The problem then is to identify the minimum of the total potential energy of the network under prescribed boundary conditions. The idea herein is to compute the solution as follows: each node is ascribed a virtual mass. Starting from arbitrary nodal displacements, with zero velocity, molecular dynamics are applied to compute system oscillations during a prescribed period of time T. We then determined the moment when the potential is minimized and we iterated the algorithm with nodal displacements corresponding to this minimum at zero velocity. We will begin by showing that this method is able to capture both the first instability of the perfectly periodic lattice (obtained analytically) and the post-buckling response. We will then study the random case, in order to demonstrate the capabilities of this methodology." @default.
- W2004877205 created "2016-06-24" @default.
- W2004877205 creator A5023464865 @default.
- W2004877205 creator A5084039156 @default.
- W2004877205 creator A5090010911 @default.
- W2004877205 date "2004-12-01" @default.
- W2004877205 modified "2023-09-25" @default.
- W2004877205 title "Molecular dynamics for the finite deformation of random elastic grids" @default.
- W2004877205 cites W1520891405 @default.
- W2004877205 cites W1662321012 @default.
- W2004877205 cites W1807750888 @default.
- W2004877205 cites W1964004374 @default.
- W2004877205 cites W1967006654 @default.
- W2004877205 cites W1969797145 @default.
- W2004877205 cites W1974766790 @default.
- W2004877205 cites W1992076013 @default.
- W2004877205 cites W1993130704 @default.
- W2004877205 cites W2001174315 @default.
- W2004877205 cites W2012549839 @default.
- W2004877205 cites W2021267625 @default.
- W2004877205 cites W2021965384 @default.
- W2004877205 cites W2035566412 @default.
- W2004877205 cites W2037999304 @default.
- W2004877205 cites W2041902442 @default.
- W2004877205 cites W2058731041 @default.
- W2004877205 cites W2059755416 @default.
- W2004877205 cites W2071877661 @default.
- W2004877205 cites W2074892726 @default.
- W2004877205 cites W2080464042 @default.
- W2004877205 cites W2092767579 @default.
- W2004877205 cites W2148753202 @default.
- W2004877205 cites W2264949896 @default.
- W2004877205 cites W2338762526 @default.
- W2004877205 cites W2468136426 @default.
- W2004877205 cites W288109794 @default.
- W2004877205 cites W642621555 @default.
- W2004877205 doi "https://doi.org/10.1016/j.mechmat.2003.11.003" @default.
- W2004877205 hasPublicationYear "2004" @default.
- W2004877205 type Work @default.
- W2004877205 sameAs 2004877205 @default.
- W2004877205 citedByCount "1" @default.
- W2004877205 crossrefType "journal-article" @default.
- W2004877205 hasAuthorship W2004877205A5023464865 @default.
- W2004877205 hasAuthorship W2004877205A5084039156 @default.
- W2004877205 hasAuthorship W2004877205A5090010911 @default.
- W2004877205 hasConcept C121332964 @default.
- W2004877205 hasConcept C127413603 @default.
- W2004877205 hasConcept C134306372 @default.
- W2004877205 hasConcept C135628077 @default.
- W2004877205 hasConcept C138885662 @default.
- W2004877205 hasConcept C14041564 @default.
- W2004877205 hasConcept C159985019 @default.
- W2004877205 hasConcept C180016635 @default.
- W2004877205 hasConcept C192562407 @default.
- W2004877205 hasConcept C202973686 @default.
- W2004877205 hasConcept C204366326 @default.
- W2004877205 hasConcept C21036866 @default.
- W2004877205 hasConcept C2780030769 @default.
- W2004877205 hasConcept C33923547 @default.
- W2004877205 hasConcept C41895202 @default.
- W2004877205 hasConcept C49932977 @default.
- W2004877205 hasConcept C57879066 @default.
- W2004877205 hasConcept C66938386 @default.
- W2004877205 hasConcept C85476182 @default.
- W2004877205 hasConcept C87976508 @default.
- W2004877205 hasConcept C97355855 @default.
- W2004877205 hasConceptScore W2004877205C121332964 @default.
- W2004877205 hasConceptScore W2004877205C127413603 @default.
- W2004877205 hasConceptScore W2004877205C134306372 @default.
- W2004877205 hasConceptScore W2004877205C135628077 @default.
- W2004877205 hasConceptScore W2004877205C138885662 @default.
- W2004877205 hasConceptScore W2004877205C14041564 @default.
- W2004877205 hasConceptScore W2004877205C159985019 @default.
- W2004877205 hasConceptScore W2004877205C180016635 @default.
- W2004877205 hasConceptScore W2004877205C192562407 @default.
- W2004877205 hasConceptScore W2004877205C202973686 @default.
- W2004877205 hasConceptScore W2004877205C204366326 @default.
- W2004877205 hasConceptScore W2004877205C21036866 @default.
- W2004877205 hasConceptScore W2004877205C2780030769 @default.
- W2004877205 hasConceptScore W2004877205C33923547 @default.
- W2004877205 hasConceptScore W2004877205C41895202 @default.
- W2004877205 hasConceptScore W2004877205C49932977 @default.
- W2004877205 hasConceptScore W2004877205C57879066 @default.
- W2004877205 hasConceptScore W2004877205C66938386 @default.
- W2004877205 hasConceptScore W2004877205C85476182 @default.
- W2004877205 hasConceptScore W2004877205C87976508 @default.
- W2004877205 hasConceptScore W2004877205C97355855 @default.
- W2004877205 hasLocation W20048772051 @default.
- W2004877205 hasOpenAccess W2004877205 @default.
- W2004877205 hasPrimaryLocation W20048772051 @default.
- W2004877205 hasRelatedWork W1540099417 @default.
- W2004877205 hasRelatedWork W1971328967 @default.
- W2004877205 hasRelatedWork W2015624954 @default.
- W2004877205 hasRelatedWork W2048772956 @default.
- W2004877205 hasRelatedWork W2056767477 @default.
- W2004877205 hasRelatedWork W2082301307 @default.
- W2004877205 hasRelatedWork W2328339680 @default.
- W2004877205 hasRelatedWork W2552626883 @default.
- W2004877205 hasRelatedWork W3105414059 @default.
- W2004877205 hasRelatedWork W3112407849 @default.