Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004879435> ?p ?o ?g. }
- W2004879435 endingPage "129" @default.
- W2004879435 startingPage "115" @default.
- W2004879435 abstract "This paper presents a comparative study of two artificial intelligence based hybrid process modeling and optimization strategies, namely ANN-GA and SVR-GA, for modeling and optimization of benzene isopropylation on Hbeta catalytic process. In the ANN-GA approach [Ind. Eng. Chem. Res. 41 (2002) 2159], an artificial neural network model is constructed for correlating process data comprising values of operating and output variables. Next, model inputs describing process operating variables are optimized using genetic algorithms (GAs) with a view to maximize the process performance. The GA possesses certain unique advantages over the commonly used gradient-based deterministic optimization algorithms. In the second hybrid methodology, a novel machine learning formalism, namely support vector regression (SVR), has been utilized for developing process models and the input space of these models is optimized again using GAs. The SVR-GA is a new strategy for chemical process modeling and optimization. The major advantage of the two hybrid strategies is that modeling and optimization can be conducted exclusively from the historic process data wherein the detailed knowledge of process phenomenology (reaction mechanism, rate constants, etc.) is not required. Using ANN-GA and SVR-GA strategies, a number of sets of optimized operating conditions leading to maximized yield and selectivity of the benzene isopropylation reaction product, namely cumene, were obtained. The optimized solutions when verified experimentally resulted in a significant improvement in the cumene yield and selectivity." @default.
- W2004879435 created "2016-06-24" @default.
- W2004879435 creator A5032077355 @default.
- W2004879435 creator A5033384790 @default.
- W2004879435 creator A5043485724 @default.
- W2004879435 creator A5051458172 @default.
- W2004879435 creator A5063771906 @default.
- W2004879435 creator A5065908843 @default.
- W2004879435 creator A5067826619 @default.
- W2004879435 date "2004-02-01" @default.
- W2004879435 modified "2023-10-17" @default.
- W2004879435 title "Hybrid process modeling and optimization strategies integrating neural networks/support vector regression and genetic algorithms: study of benzene isopropylation on Hbeta catalyst" @default.
- W2004879435 cites W1498436455 @default.
- W2004879435 cites W1512098439 @default.
- W2004879435 cites W1663792126 @default.
- W2004879435 cites W1797539709 @default.
- W2004879435 cites W1965229818 @default.
- W2004879435 cites W1970338077 @default.
- W2004879435 cites W1981895388 @default.
- W2004879435 cites W1987743351 @default.
- W2004879435 cites W1988094199 @default.
- W2004879435 cites W1995352662 @default.
- W2004879435 cites W2001575957 @default.
- W2004879435 cites W2007154098 @default.
- W2004879435 cites W2012132549 @default.
- W2004879435 cites W2016742135 @default.
- W2004879435 cites W2018330704 @default.
- W2004879435 cites W2020970871 @default.
- W2004879435 cites W2024319154 @default.
- W2004879435 cites W2027107102 @default.
- W2004879435 cites W2052656591 @default.
- W2004879435 cites W2104717843 @default.
- W2004879435 cites W2132870739 @default.
- W2004879435 cites W2139212933 @default.
- W2004879435 cites W2143908786 @default.
- W2004879435 cites W2156909104 @default.
- W2004879435 cites W2171349965 @default.
- W2004879435 cites W29051795 @default.
- W2004879435 doi "https://doi.org/10.1016/s1385-8947(03)00150-5" @default.
- W2004879435 hasPublicationYear "2004" @default.
- W2004879435 type Work @default.
- W2004879435 sameAs 2004879435 @default.
- W2004879435 citedByCount "102" @default.
- W2004879435 countsByYear W20048794352012 @default.
- W2004879435 countsByYear W20048794352013 @default.
- W2004879435 countsByYear W20048794352014 @default.
- W2004879435 countsByYear W20048794352015 @default.
- W2004879435 countsByYear W20048794352016 @default.
- W2004879435 countsByYear W20048794352017 @default.
- W2004879435 countsByYear W20048794352018 @default.
- W2004879435 countsByYear W20048794352019 @default.
- W2004879435 countsByYear W20048794352020 @default.
- W2004879435 countsByYear W20048794352021 @default.
- W2004879435 countsByYear W20048794352022 @default.
- W2004879435 countsByYear W20048794352023 @default.
- W2004879435 crossrefType "journal-article" @default.
- W2004879435 hasAuthorship W2004879435A5032077355 @default.
- W2004879435 hasAuthorship W2004879435A5033384790 @default.
- W2004879435 hasAuthorship W2004879435A5043485724 @default.
- W2004879435 hasAuthorship W2004879435A5051458172 @default.
- W2004879435 hasAuthorship W2004879435A5063771906 @default.
- W2004879435 hasAuthorship W2004879435A5065908843 @default.
- W2004879435 hasAuthorship W2004879435A5067826619 @default.
- W2004879435 hasConcept C115952470 @default.
- W2004879435 hasConcept C119857082 @default.
- W2004879435 hasConcept C12267149 @default.
- W2004879435 hasConcept C126255220 @default.
- W2004879435 hasConcept C127413603 @default.
- W2004879435 hasConcept C154945302 @default.
- W2004879435 hasConcept C178790620 @default.
- W2004879435 hasConcept C185592680 @default.
- W2004879435 hasConcept C2777691172 @default.
- W2004879435 hasConcept C2778215507 @default.
- W2004879435 hasConcept C33923547 @default.
- W2004879435 hasConcept C41008148 @default.
- W2004879435 hasConcept C50644808 @default.
- W2004879435 hasConcept C87717796 @default.
- W2004879435 hasConceptScore W2004879435C115952470 @default.
- W2004879435 hasConceptScore W2004879435C119857082 @default.
- W2004879435 hasConceptScore W2004879435C12267149 @default.
- W2004879435 hasConceptScore W2004879435C126255220 @default.
- W2004879435 hasConceptScore W2004879435C127413603 @default.
- W2004879435 hasConceptScore W2004879435C154945302 @default.
- W2004879435 hasConceptScore W2004879435C178790620 @default.
- W2004879435 hasConceptScore W2004879435C185592680 @default.
- W2004879435 hasConceptScore W2004879435C2777691172 @default.
- W2004879435 hasConceptScore W2004879435C2778215507 @default.
- W2004879435 hasConceptScore W2004879435C33923547 @default.
- W2004879435 hasConceptScore W2004879435C41008148 @default.
- W2004879435 hasConceptScore W2004879435C50644808 @default.
- W2004879435 hasConceptScore W2004879435C87717796 @default.
- W2004879435 hasIssue "2-3" @default.
- W2004879435 hasLocation W20048794351 @default.
- W2004879435 hasOpenAccess W2004879435 @default.
- W2004879435 hasPrimaryLocation W20048794351 @default.
- W2004879435 hasRelatedWork W1508106189 @default.
- W2004879435 hasRelatedWork W20192034 @default.
- W2004879435 hasRelatedWork W2039604388 @default.