Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004994733> ?p ?o ?g. }
- W2004994733 endingPage "313" @default.
- W2004994733 startingPage "307" @default.
- W2004994733 abstract "The use of least-squares support vector machines (LS-SVM) combined with near-infrared (NIR) spectra for prediction of enological parameters and discrimination of rice wine age is proposed. The scores of the first ten principal components (PCs) derived from PC analysis (PCA) and radial basis function (RBF) were used as input feature subset and kernel function of LS-SVM models, respectively. The optimal parameters, the relative weight of the regression error γ and the kernel parameter σ2, were found from grid search and leave-one-out cross-validation. As compared to partial least-squares (PLS) regression, the performance of LS-SVM was slightly better, with higher determination coefficients for validation (Rval2) and lower root-mean-square error of validation (RMSEP) for alcohol content, titratable acidity, and pH, respectively. When used to discriminate rice wine age, LS-SVM gave better results than discriminant analysis (DA). On the basis of the results, it was concluded that LS-SVM together with NIR spectroscopy was a reliable and accurate method for rice wine quality estimation." @default.
- W2004994733 created "2016-06-24" @default.
- W2004994733 creator A5015816121 @default.
- W2004994733 creator A5024176857 @default.
- W2004994733 creator A5079327872 @default.
- W2004994733 creator A5083868441 @default.
- W2004994733 creator A5085212762 @default.
- W2004994733 creator A5087515257 @default.
- W2004994733 date "2008-01-01" @default.
- W2004994733 modified "2023-10-18" @default.
- W2004994733 title "Prediction of Enological Parameters and Discrimination of Rice Wine Age Using Least-Squares Support Vector Machines and Near Infrared Spectroscopy" @default.
- W2004994733 cites W1496317909 @default.
- W2004994733 cites W1581555665 @default.
- W2004994733 cites W1966066542 @default.
- W2004994733 cites W1967705180 @default.
- W2004994733 cites W1976638568 @default.
- W2004994733 cites W1977358918 @default.
- W2004994733 cites W1980149168 @default.
- W2004994733 cites W1988782701 @default.
- W2004994733 cites W2006241521 @default.
- W2004994733 cites W2008958070 @default.
- W2004994733 cites W2013102699 @default.
- W2004994733 cites W2035881465 @default.
- W2004994733 cites W2042792113 @default.
- W2004994733 cites W2051112824 @default.
- W2004994733 cites W2052684391 @default.
- W2004994733 cites W2054030641 @default.
- W2004994733 cites W2055563201 @default.
- W2004994733 cites W2055576216 @default.
- W2004994733 cites W2055817716 @default.
- W2004994733 cites W2056137745 @default.
- W2004994733 cites W2061763845 @default.
- W2004994733 cites W2063965580 @default.
- W2004994733 cites W2065553127 @default.
- W2004994733 cites W2085370119 @default.
- W2004994733 cites W2086458372 @default.
- W2004994733 cites W2091828034 @default.
- W2004994733 cites W2105399939 @default.
- W2004994733 cites W2119005014 @default.
- W2004994733 cites W2131248453 @default.
- W2004994733 cites W2156909104 @default.
- W2004994733 cites W3023328813 @default.
- W2004994733 cites W51638910 @default.
- W2004994733 doi "https://doi.org/10.1021/jf0725575" @default.
- W2004994733 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18167072" @default.
- W2004994733 hasPublicationYear "2008" @default.
- W2004994733 type Work @default.
- W2004994733 sameAs 2004994733 @default.
- W2004994733 citedByCount "38" @default.
- W2004994733 countsByYear W20049947332012 @default.
- W2004994733 countsByYear W20049947332013 @default.
- W2004994733 countsByYear W20049947332014 @default.
- W2004994733 countsByYear W20049947332015 @default.
- W2004994733 countsByYear W20049947332016 @default.
- W2004994733 countsByYear W20049947332017 @default.
- W2004994733 countsByYear W20049947332018 @default.
- W2004994733 countsByYear W20049947332019 @default.
- W2004994733 countsByYear W20049947332020 @default.
- W2004994733 countsByYear W20049947332021 @default.
- W2004994733 countsByYear W20049947332022 @default.
- W2004994733 countsByYear W20049947332023 @default.
- W2004994733 crossrefType "journal-article" @default.
- W2004994733 hasAuthorship W2004994733A5015816121 @default.
- W2004994733 hasAuthorship W2004994733A5024176857 @default.
- W2004994733 hasAuthorship W2004994733A5079327872 @default.
- W2004994733 hasAuthorship W2004994733A5083868441 @default.
- W2004994733 hasAuthorship W2004994733A5085212762 @default.
- W2004994733 hasAuthorship W2004994733A5087515257 @default.
- W2004994733 hasConcept C10485038 @default.
- W2004994733 hasConcept C105795698 @default.
- W2004994733 hasConcept C114614502 @default.
- W2004994733 hasConcept C12267149 @default.
- W2004994733 hasConcept C139945424 @default.
- W2004994733 hasConcept C145828037 @default.
- W2004994733 hasConcept C153180895 @default.
- W2004994733 hasConcept C154945302 @default.
- W2004994733 hasConcept C185592680 @default.
- W2004994733 hasConcept C22354355 @default.
- W2004994733 hasConcept C27181475 @default.
- W2004994733 hasConcept C27438332 @default.
- W2004994733 hasConcept C31903555 @default.
- W2004994733 hasConcept C33923547 @default.
- W2004994733 hasConcept C41008148 @default.
- W2004994733 hasConcept C50644808 @default.
- W2004994733 hasConcept C55952523 @default.
- W2004994733 hasConcept C69738355 @default.
- W2004994733 hasConcept C74193536 @default.
- W2004994733 hasConcept C74887250 @default.
- W2004994733 hasConcept C98856871 @default.
- W2004994733 hasConceptScore W2004994733C10485038 @default.
- W2004994733 hasConceptScore W2004994733C105795698 @default.
- W2004994733 hasConceptScore W2004994733C114614502 @default.
- W2004994733 hasConceptScore W2004994733C12267149 @default.
- W2004994733 hasConceptScore W2004994733C139945424 @default.
- W2004994733 hasConceptScore W2004994733C145828037 @default.
- W2004994733 hasConceptScore W2004994733C153180895 @default.
- W2004994733 hasConceptScore W2004994733C154945302 @default.
- W2004994733 hasConceptScore W2004994733C185592680 @default.