Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005012987> ?p ?o ?g. }
- W2005012987 endingPage "29" @default.
- W2005012987 startingPage "11" @default.
- W2005012987 abstract "We performed piston cylinder experiments (1200–1350 °C, 2 GPa) to determine the diffusion rates of Si and O in mantle olivine under water undersaturated (brucite absent, 45 ppm H2O in olivine) as well as close to water-saturated (brucite present, ∼370 ppm H2O in olivine) conditions. Diffusion couples consisted of oriented and polished San Carlos olivine cylinders coated with thin (∼few 100 nm) films of the same composition enriched in 29Si and 18O, with a protective coating of ZrO2 on top. Relationships between water solubility in olivine and water fugacity, combined with thermodynamic equilibrium calculations, indicate fH2O ∼1 GPa, fO2 ∼IW buffer for brucite absent and fH2O ∼9 GPa, fO2 ∼QFM buffer for brucite present experiments. We find that under hydrous conditions DSi ≈ DO and diffusion anisotropy is weak to non-existent. Fitting the raw data at 2 GPa and fH2O ∼0.93 GPa yields Arrhenius parameters [Do and Ep in D = Do exp(−Ep/RT)] of: 1.68 (±3.52) × 10−7 m2 s−1 and 358 ± 28 kJ mol−1 for Si, and 1.43 (±1.80) × 10−4 m2 s−1 and 437 ± 17 kJ mol−1 for O, respectively (1 sigma errors). D (2 GPa, fH2O = 0.97 GPa, 1200 °C): D (1 atm., dry, 1200 °C) is 1000 for Si and 10 for O, respectively. Equations incorporating explicitly the effect of water are discussed in the text. Analysis of our data suggests that O diffuses by an interstitial mechanism whereas Si diffuses via vacancy complexes. The relation between the water fugacity and the Si diffusion rates seems to obey a power law with a water fugacity exponent of 0.2–1. The amount of H incorporated into olivine at the experimental conditions is orders of magnitude higher than the likely concentration of Si vacancies. Therefore, a small fraction (∼0.01%) of the total incorporated H in olivine suffices to considerably enhance the concentration of Si vacancies, and hence diffusion rates. Activation energies for O diffusion under dry and wet conditions are similar, indicating that the mechanism of this diffusion does not change in the presence of water. This inference is consistent with results of computer simulations. Dislocation creep in olivine under wet conditions appears to be controlled by both, Si as well as O diffusion. Absolute creep rates can be calculated from the diffusion data if it is assumed that climb and glide of dislocations contribute equally to creep. Finally, analysis of the various transport properties indicate that <10 ppm of water in olivine is sufficient to cause a transition from “dry” to “wet” laws for most processes. As these water contents are even lower than the observed water contents in most mantle olivines (i.e. minimum values measured at the surface), we conclude that results of water present but undersaturated kinetic experiments are directly applicable to the mantle. Indeed, “wet” kinetic laws should be used for modeling geodynamic processes in the upper mantle, even if the mantle is thought to be undersaturated with respect to water." @default.
- W2005012987 created "2016-06-24" @default.
- W2005012987 creator A5029043376 @default.
- W2005012987 creator A5072191678 @default.
- W2005012987 date "2008-01-01" @default.
- W2005012987 modified "2023-10-16" @default.
- W2005012987 title "The effect of water on Si and O diffusion rates in olivine and implications for transport properties and processes in the upper mantle" @default.
- W2005012987 cites W110052030 @default.
- W2005012987 cites W135219457 @default.
- W2005012987 cites W152612023 @default.
- W2005012987 cites W1526822454 @default.
- W2005012987 cites W1531400842 @default.
- W2005012987 cites W1543257786 @default.
- W2005012987 cites W1665186240 @default.
- W2005012987 cites W1830358639 @default.
- W2005012987 cites W1965110918 @default.
- W2005012987 cites W1965203815 @default.
- W2005012987 cites W1965339476 @default.
- W2005012987 cites W1970967823 @default.
- W2005012987 cites W1974133787 @default.
- W2005012987 cites W1974740950 @default.
- W2005012987 cites W1977202349 @default.
- W2005012987 cites W1977428924 @default.
- W2005012987 cites W1979088942 @default.
- W2005012987 cites W1979641852 @default.
- W2005012987 cites W1987984101 @default.
- W2005012987 cites W1989240732 @default.
- W2005012987 cites W1990775837 @default.
- W2005012987 cites W1992066641 @default.
- W2005012987 cites W1994010532 @default.
- W2005012987 cites W1994474998 @default.
- W2005012987 cites W1996525105 @default.
- W2005012987 cites W2000394930 @default.
- W2005012987 cites W2003597969 @default.
- W2005012987 cites W2004926800 @default.
- W2005012987 cites W2013219595 @default.
- W2005012987 cites W2017574277 @default.
- W2005012987 cites W2023085307 @default.
- W2005012987 cites W2023709137 @default.
- W2005012987 cites W2024676343 @default.
- W2005012987 cites W2024833587 @default.
- W2005012987 cites W2025516624 @default.
- W2005012987 cites W2026491958 @default.
- W2005012987 cites W2027280122 @default.
- W2005012987 cites W2028174043 @default.
- W2005012987 cites W2029345429 @default.
- W2005012987 cites W2031967575 @default.
- W2005012987 cites W2034453233 @default.
- W2005012987 cites W2041507297 @default.
- W2005012987 cites W2045038055 @default.
- W2005012987 cites W2046612596 @default.
- W2005012987 cites W2049276138 @default.
- W2005012987 cites W2053441820 @default.
- W2005012987 cites W2055144017 @default.
- W2005012987 cites W2055858362 @default.
- W2005012987 cites W2059539080 @default.
- W2005012987 cites W2064166176 @default.
- W2005012987 cites W2065757458 @default.
- W2005012987 cites W2067117826 @default.
- W2005012987 cites W2067602432 @default.
- W2005012987 cites W2071392001 @default.
- W2005012987 cites W2072333725 @default.
- W2005012987 cites W2073165044 @default.
- W2005012987 cites W2073668548 @default.
- W2005012987 cites W2075360376 @default.
- W2005012987 cites W2075567900 @default.
- W2005012987 cites W2076679286 @default.
- W2005012987 cites W2081111865 @default.
- W2005012987 cites W2086025924 @default.
- W2005012987 cites W2086713117 @default.
- W2005012987 cites W2088050060 @default.
- W2005012987 cites W2112338644 @default.
- W2005012987 cites W2121974424 @default.
- W2005012987 cites W2129676110 @default.
- W2005012987 cites W2130640980 @default.
- W2005012987 cites W2132304896 @default.
- W2005012987 cites W2132467390 @default.
- W2005012987 cites W2138359451 @default.
- W2005012987 cites W2141874414 @default.
- W2005012987 cites W2147884637 @default.
- W2005012987 cites W2152627925 @default.
- W2005012987 cites W2159607753 @default.
- W2005012987 cites W2161301874 @default.
- W2005012987 cites W2162330789 @default.
- W2005012987 cites W2303227244 @default.
- W2005012987 cites W2326602674 @default.
- W2005012987 cites W2334707162 @default.
- W2005012987 cites W2566934992 @default.
- W2005012987 cites W2899955439 @default.
- W2005012987 cites W2900010559 @default.
- W2005012987 cites W2900416075 @default.
- W2005012987 cites W2990075592 @default.
- W2005012987 cites W4231989839 @default.
- W2005012987 cites W4242949714 @default.
- W2005012987 cites W4250970938 @default.
- W2005012987 cites W4254906957 @default.
- W2005012987 cites W938464876 @default.
- W2005012987 doi "https://doi.org/10.1016/j.pepi.2007.10.006" @default.