Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005014766> ?p ?o ?g. }
- W2005014766 endingPage "71" @default.
- W2005014766 startingPage "71" @default.
- W2005014766 abstract "We study the behavior of vortex matter in artificial flow channels confined by pinned vortices in the channel edges (CE's). The critical current $J_s$ is governed by the interaction with static vortices in the CE's. We study structural changes associated with (in)commensurability between the channel width $w$ and the natural row spacing $b_0$, and their effect on $J_s$. The behavior depends crucially on the presence of disorder in the CE arrays. For ordered CE's, maxima in $J_s$ occur at matching $w=nb_0$ ($n$ integer), while for $wneq nb_0$ defects along the CE's cause a vanishing $J_s$. For weak CE disorder, the sharp peaks in $J_s$ at $w=nb_0$ become smeared via nucleation and pinning of defects. The corresponding quasi-1D $n$ row configurations can be described by a (disordered)sine-Gordon model. For larger disorder and $wsimeq nb_0$, $J_s$ levels at $sim 30 %$ of the ideal lattice strength $J_s^0$. Around 'half filling' ($w/b_0 simeq npm 1/2$), disorder causes new features, namely {it misaligned} defects and coexistence of $n$ and $n pm 1$ rows in the channel. This causes a {it maximum} in $J_s$ around mismatch, while $J_s$ smoothly decreases towards matching due to annealing of the misaligned regions. We study the evolution of static and dynamic structures on changing $w/b_0$, the relation between modulations of $J_s$ and transverse fluctuations and dynamic ordering of the arrays. The numerical results at strong disorder show good qualitative agreement with recent mode-locking experiments." @default.
- W2005014766 created "2016-06-24" @default.
- W2005014766 creator A5023026440 @default.
- W2005014766 creator A5054511102 @default.
- W2005014766 creator A5059317574 @default.
- W2005014766 creator A5075045469 @default.
- W2005014766 date "2005-02-26" @default.
- W2005014766 modified "2023-10-13" @default.
- W2005014766 title "Depinning and dynamics of vortices confined in mesoscopic flow channels" @default.
- W2005014766 cites W1679915116 @default.
- W2005014766 cites W1966493068 @default.
- W2005014766 cites W1968499943 @default.
- W2005014766 cites W1968574217 @default.
- W2005014766 cites W1968623619 @default.
- W2005014766 cites W1969325345 @default.
- W2005014766 cites W1969591096 @default.
- W2005014766 cites W1970620505 @default.
- W2005014766 cites W1971849638 @default.
- W2005014766 cites W1971888484 @default.
- W2005014766 cites W1973696194 @default.
- W2005014766 cites W1976049145 @default.
- W2005014766 cites W1979227995 @default.
- W2005014766 cites W1980645311 @default.
- W2005014766 cites W1982361065 @default.
- W2005014766 cites W1983858220 @default.
- W2005014766 cites W1988902306 @default.
- W2005014766 cites W1989634397 @default.
- W2005014766 cites W1991675300 @default.
- W2005014766 cites W1993684081 @default.
- W2005014766 cites W1996693907 @default.
- W2005014766 cites W1997679852 @default.
- W2005014766 cites W2000223154 @default.
- W2005014766 cites W2000436447 @default.
- W2005014766 cites W2001159693 @default.
- W2005014766 cites W2001255745 @default.
- W2005014766 cites W2008350171 @default.
- W2005014766 cites W2008713738 @default.
- W2005014766 cites W2010140766 @default.
- W2005014766 cites W2012543201 @default.
- W2005014766 cites W2013256203 @default.
- W2005014766 cites W2015156118 @default.
- W2005014766 cites W2016089001 @default.
- W2005014766 cites W2016701895 @default.
- W2005014766 cites W2017474666 @default.
- W2005014766 cites W2020660645 @default.
- W2005014766 cites W2023743686 @default.
- W2005014766 cites W2025166334 @default.
- W2005014766 cites W2026530281 @default.
- W2005014766 cites W2026907947 @default.
- W2005014766 cites W2028134199 @default.
- W2005014766 cites W2033366166 @default.
- W2005014766 cites W2036429267 @default.
- W2005014766 cites W2038437321 @default.
- W2005014766 cites W2041214949 @default.
- W2005014766 cites W2043705393 @default.
- W2005014766 cites W2049147493 @default.
- W2005014766 cites W2049151951 @default.
- W2005014766 cites W2053180769 @default.
- W2005014766 cites W2054743225 @default.
- W2005014766 cites W2056145806 @default.
- W2005014766 cites W2057274917 @default.
- W2005014766 cites W2058014661 @default.
- W2005014766 cites W2059948280 @default.
- W2005014766 cites W2064502505 @default.
- W2005014766 cites W2065258474 @default.
- W2005014766 cites W2067411075 @default.
- W2005014766 cites W2069863970 @default.
- W2005014766 cites W2070169038 @default.
- W2005014766 cites W2071028586 @default.
- W2005014766 cites W2071982880 @default.
- W2005014766 cites W2073627378 @default.
- W2005014766 cites W2074596543 @default.
- W2005014766 cites W2074936588 @default.
- W2005014766 cites W2074955856 @default.
- W2005014766 cites W2077684232 @default.
- W2005014766 cites W2079160754 @default.
- W2005014766 cites W2080026421 @default.
- W2005014766 cites W2080107276 @default.
- W2005014766 cites W2080211728 @default.
- W2005014766 cites W2081837785 @default.
- W2005014766 cites W2084414102 @default.
- W2005014766 cites W2085819439 @default.
- W2005014766 cites W2087159285 @default.
- W2005014766 cites W2088009716 @default.
- W2005014766 cites W2091286255 @default.
- W2005014766 cites W2093424565 @default.
- W2005014766 cites W2096731312 @default.
- W2005014766 cites W2130921351 @default.
- W2005014766 cites W2140771574 @default.
- W2005014766 cites W2154421583 @default.
- W2005014766 cites W246958489 @default.
- W2005014766 cites W28471349 @default.
- W2005014766 cites W2912260169 @default.
- W2005014766 cites W3100266293 @default.
- W2005014766 cites W4232841373 @default.
- W2005014766 cites W4233598626 @default.
- W2005014766 cites W4247683143 @default.
- W2005014766 cites W2002740639 @default.