Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005038502> ?p ?o ?g. }
- W2005038502 endingPage "81" @default.
- W2005038502 startingPage "74" @default.
- W2005038502 abstract "Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the power law form, including 1/f noise." @default.
- W2005038502 created "2016-06-24" @default.
- W2005038502 creator A5021964474 @default.
- W2005038502 creator A5083134346 @default.
- W2005038502 date "2015-06-01" @default.
- W2005038502 modified "2023-09-28" @default.
- W2005038502 title "Nonlinear GARCH model and <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML altimg=si29.gif display=inline overflow=scroll><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mi>f</mml:mi></mml:math> noise" @default.
- W2005038502 cites W1552362148 @default.
- W2005038502 cites W1599154065 @default.
- W2005038502 cites W1966047955 @default.
- W2005038502 cites W1966728196 @default.
- W2005038502 cites W1979575715 @default.
- W2005038502 cites W1985146307 @default.
- W2005038502 cites W1994177366 @default.
- W2005038502 cites W1999996900 @default.
- W2005038502 cites W2000265426 @default.
- W2005038502 cites W2005424182 @default.
- W2005038502 cites W2016503085 @default.
- W2005038502 cites W2018683035 @default.
- W2005038502 cites W2022041481 @default.
- W2005038502 cites W2022695740 @default.
- W2005038502 cites W2023240121 @default.
- W2005038502 cites W2028103771 @default.
- W2005038502 cites W2032143100 @default.
- W2005038502 cites W2045288439 @default.
- W2005038502 cites W2050238052 @default.
- W2005038502 cites W2051722917 @default.
- W2005038502 cites W2053333723 @default.
- W2005038502 cites W2055500777 @default.
- W2005038502 cites W2057116804 @default.
- W2005038502 cites W2063047535 @default.
- W2005038502 cites W2064978316 @default.
- W2005038502 cites W2081815669 @default.
- W2005038502 cites W2089803230 @default.
- W2005038502 cites W2090637028 @default.
- W2005038502 cites W2094123331 @default.
- W2005038502 cites W2104798680 @default.
- W2005038502 cites W2113106633 @default.
- W2005038502 cites W2114012669 @default.
- W2005038502 cites W2117019869 @default.
- W2005038502 cites W2122528211 @default.
- W2005038502 cites W2122960498 @default.
- W2005038502 cites W2145500502 @default.
- W2005038502 cites W2151295840 @default.
- W2005038502 cites W2161299958 @default.
- W2005038502 cites W2164062516 @default.
- W2005038502 cites W2192169618 @default.
- W2005038502 cites W2962839713 @default.
- W2005038502 cites W3121960989 @default.
- W2005038502 cites W3125246470 @default.
- W2005038502 cites W3125811491 @default.
- W2005038502 cites W4252774600 @default.
- W2005038502 doi "https://doi.org/10.1016/j.physa.2015.02.040" @default.
- W2005038502 hasPublicationYear "2015" @default.
- W2005038502 type Work @default.
- W2005038502 sameAs 2005038502 @default.
- W2005038502 citedByCount "14" @default.
- W2005038502 countsByYear W20050385022015 @default.
- W2005038502 countsByYear W20050385022016 @default.
- W2005038502 countsByYear W20050385022017 @default.
- W2005038502 countsByYear W20050385022018 @default.
- W2005038502 countsByYear W20050385022019 @default.
- W2005038502 countsByYear W20050385022020 @default.
- W2005038502 countsByYear W20050385022021 @default.
- W2005038502 countsByYear W20050385022022 @default.
- W2005038502 crossrefType "journal-article" @default.
- W2005038502 hasAuthorship W2005038502A5021964474 @default.
- W2005038502 hasAuthorship W2005038502A5083134346 @default.
- W2005038502 hasBestOaLocation W20050385022 @default.
- W2005038502 hasConcept C101104100 @default.
- W2005038502 hasConcept C105795698 @default.
- W2005038502 hasConcept C112401455 @default.
- W2005038502 hasConcept C121332964 @default.
- W2005038502 hasConcept C121864883 @default.
- W2005038502 hasConcept C149782125 @default.
- W2005038502 hasConcept C158622935 @default.
- W2005038502 hasConcept C23922673 @default.
- W2005038502 hasConcept C28826006 @default.
- W2005038502 hasConcept C33923547 @default.
- W2005038502 hasConcept C43555835 @default.
- W2005038502 hasConcept C51955184 @default.
- W2005038502 hasConcept C62520636 @default.
- W2005038502 hasConcept C87040749 @default.
- W2005038502 hasConcept C91602232 @default.
- W2005038502 hasConceptScore W2005038502C101104100 @default.
- W2005038502 hasConceptScore W2005038502C105795698 @default.
- W2005038502 hasConceptScore W2005038502C112401455 @default.
- W2005038502 hasConceptScore W2005038502C121332964 @default.
- W2005038502 hasConceptScore W2005038502C121864883 @default.
- W2005038502 hasConceptScore W2005038502C149782125 @default.
- W2005038502 hasConceptScore W2005038502C158622935 @default.
- W2005038502 hasConceptScore W2005038502C23922673 @default.
- W2005038502 hasConceptScore W2005038502C28826006 @default.
- W2005038502 hasConceptScore W2005038502C33923547 @default.
- W2005038502 hasConceptScore W2005038502C43555835 @default.
- W2005038502 hasConceptScore W2005038502C51955184 @default.
- W2005038502 hasConceptScore W2005038502C62520636 @default.
- W2005038502 hasConceptScore W2005038502C87040749 @default.