Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005097689> ?p ?o ?g. }
- W2005097689 endingPage "642" @default.
- W2005097689 startingPage "635" @default.
- W2005097689 abstract "In carotid surgery, it could be useful to know which patient will tolerate carotid cross-clamping in order to minimize the risks of perioperative strokes. In this clinical study, an artificial neuronal network (ANN) was applied and compared with conventional statistical methods to assess the value of various parameters to predict shunt necessity. Eight hundred and fifty patients undergoing carotid endarterectomy for a high-grade internal carotid artery stenosis under local anesthesia were analyzed regarding shunt necessity using a standard feed-forward, backpropagation ANN (NeuroSolutions); NeuroDimensions, Gainesville, FL) with three layers (one input layer, one hidden layer, one output layer). Among the input neurons, preoperative clinical (n = 9) and intraoperative hemodynamic (n = 3) parameters were examined separately. The accuracy of prediction was compared to the results of a regression analysis using the same variables. In 173 patients (20%) a shunt was used because hemispheric deficits or unconsciousness occurred during cross-clamping. With the ANN, not needing a shunt was predicted by preoperative and intraoperative parameters with an accuracy of 96% and 91%, respectively, where the regression analysis showed an accuracy of 98% and 96%, respectively. Those patients who needed a shunt were identified by preoperative parameters in 9% and by intraoperative parameters in 56% when the ANN was used. Regression analysis predicted shunt use correctly in 10% using preoperative parameters and 41% using intraoperative parameters. Intraoperative hemodynamic parameters are more suitable than preoperative parameters to indicate shunt necessity where the application of an ANN provides slightly better results compared to regression analysis. However, the overall accuracy is too low to renounce perioperative neuromonitoring methods like local anesthesia." @default.
- W2005097689 created "2016-06-24" @default.
- W2005097689 creator A5023665139 @default.
- W2005097689 creator A5049272326 @default.
- W2005097689 creator A5050118577 @default.
- W2005097689 creator A5052069190 @default.
- W2005097689 creator A5082856775 @default.
- W2005097689 creator A5001868065 @default.
- W2005097689 date "2008-09-01" @default.
- W2005097689 modified "2023-09-27" @default.
- W2005097689 title "Implementation of an Artificial Neuronal Network to Predict Shunt Necessity in Carotid Surgery" @default.
- W2005097689 cites W1567081854 @default.
- W2005097689 cites W1740376762 @default.
- W2005097689 cites W1965862994 @default.
- W2005097689 cites W1969342502 @default.
- W2005097689 cites W1972690404 @default.
- W2005097689 cites W1985242685 @default.
- W2005097689 cites W1989418685 @default.
- W2005097689 cites W1992912328 @default.
- W2005097689 cites W2000994430 @default.
- W2005097689 cites W2001834058 @default.
- W2005097689 cites W2002509786 @default.
- W2005097689 cites W2012289572 @default.
- W2005097689 cites W2012448360 @default.
- W2005097689 cites W2016329280 @default.
- W2005097689 cites W2018888309 @default.
- W2005097689 cites W2019414051 @default.
- W2005097689 cites W2039056260 @default.
- W2005097689 cites W2039173155 @default.
- W2005097689 cites W2040934866 @default.
- W2005097689 cites W2044414659 @default.
- W2005097689 cites W2046575449 @default.
- W2005097689 cites W2046751517 @default.
- W2005097689 cites W2055000402 @default.
- W2005097689 cites W2058857279 @default.
- W2005097689 cites W2058959574 @default.
- W2005097689 cites W2081703316 @default.
- W2005097689 cites W2088962464 @default.
- W2005097689 cites W2095897425 @default.
- W2005097689 cites W2105564510 @default.
- W2005097689 cites W2105857214 @default.
- W2005097689 cites W2123715374 @default.
- W2005097689 cites W2140218006 @default.
- W2005097689 cites W2156007657 @default.
- W2005097689 cites W2164605269 @default.
- W2005097689 cites W2169182513 @default.
- W2005097689 cites W2169472609 @default.
- W2005097689 cites W2316216706 @default.
- W2005097689 cites W2316997036 @default.
- W2005097689 doi "https://doi.org/10.1016/j.avsg.2008.04.004" @default.
- W2005097689 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18761224" @default.
- W2005097689 hasPublicationYear "2008" @default.
- W2005097689 type Work @default.
- W2005097689 sameAs 2005097689 @default.
- W2005097689 citedByCount "10" @default.
- W2005097689 countsByYear W20050976892012 @default.
- W2005097689 countsByYear W20050976892013 @default.
- W2005097689 countsByYear W20050976892018 @default.
- W2005097689 countsByYear W20050976892019 @default.
- W2005097689 countsByYear W20050976892022 @default.
- W2005097689 crossrefType "journal-article" @default.
- W2005097689 hasAuthorship W2005097689A5001868065 @default.
- W2005097689 hasAuthorship W2005097689A5023665139 @default.
- W2005097689 hasAuthorship W2005097689A5049272326 @default.
- W2005097689 hasAuthorship W2005097689A5050118577 @default.
- W2005097689 hasAuthorship W2005097689A5052069190 @default.
- W2005097689 hasAuthorship W2005097689A5082856775 @default.
- W2005097689 hasConcept C141071460 @default.
- W2005097689 hasConcept C164705383 @default.
- W2005097689 hasConcept C178853913 @default.
- W2005097689 hasConcept C2776470351 @default.
- W2005097689 hasConcept C2778333808 @default.
- W2005097689 hasConcept C2780007028 @default.
- W2005097689 hasConcept C2780968331 @default.
- W2005097689 hasConcept C2781068581 @default.
- W2005097689 hasConcept C2987047532 @default.
- W2005097689 hasConcept C31174226 @default.
- W2005097689 hasConcept C42219234 @default.
- W2005097689 hasConcept C71924100 @default.
- W2005097689 hasConceptScore W2005097689C141071460 @default.
- W2005097689 hasConceptScore W2005097689C164705383 @default.
- W2005097689 hasConceptScore W2005097689C178853913 @default.
- W2005097689 hasConceptScore W2005097689C2776470351 @default.
- W2005097689 hasConceptScore W2005097689C2778333808 @default.
- W2005097689 hasConceptScore W2005097689C2780007028 @default.
- W2005097689 hasConceptScore W2005097689C2780968331 @default.
- W2005097689 hasConceptScore W2005097689C2781068581 @default.
- W2005097689 hasConceptScore W2005097689C2987047532 @default.
- W2005097689 hasConceptScore W2005097689C31174226 @default.
- W2005097689 hasConceptScore W2005097689C42219234 @default.
- W2005097689 hasConceptScore W2005097689C71924100 @default.
- W2005097689 hasIssue "5" @default.
- W2005097689 hasLocation W20050976891 @default.
- W2005097689 hasLocation W20050976892 @default.
- W2005097689 hasOpenAccess W2005097689 @default.
- W2005097689 hasPrimaryLocation W20050976891 @default.
- W2005097689 hasRelatedWork W2011739925 @default.
- W2005097689 hasRelatedWork W2068795717 @default.