Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005173952> ?p ?o ?g. }
- W2005173952 endingPage "89" @default.
- W2005173952 startingPage "86" @default.
- W2005173952 abstract "Randomly adsorbing chemically synthesized silver nanocubes, each of which is the optical analogue of a grounded patch antenna, onto a nanoscale-thick polymer spacer layer on a gold film results in a metamaterial surface with a reflectance spectrum that can be tailored by varying the geometry. In many photonic applications ranging from sensors to energy-harvesting devices, a perfectly absorbing material is desired. Previously, perfect absorbers of infrared or visible light have been made by using lithography to create patterned structures on metallic surfaces, but this approach is expensive and difficult to scale up. Antoine Moreau et al. have developed an attractively simple method, in which silver nanocubes produced by wet chemistry are randomly distributed across a polymer-coated gold surface. Each cube acts as a nanoantenna to counter the reflectance of the metal surface. These cubes are simple and cheap to produce and can be easily spread and attached to the surface, so that large areas can be covered. They provide a means of controlling the colour of the reflected light, and the efficient optical response of the cubes suggests that mixed cube populations with controlled sized dispersion could be used to adjust the absorption at will. Efficient and tunable absorption is essential for a variety of applications, such as designing controlled-emissivity surfaces for thermophotovoltaic devices1, tailoring an infrared spectrum for controlled thermal dissipation2 and producing detector elements for imaging3. Metamaterials based on metallic elements are particularly efficient as absorbing media, because both the electrical and the magnetic properties of a metamaterial can be tuned by structured design4. So far, metamaterial absorbers in the infrared or visible range have been fabricated using lithographically patterned metallic structures2,5,6,7,8,9, making them inherently difficult to produce over large areas and hence reducing their applicability. Here we demonstrate a simple method to create a metamaterial absorber by randomly adsorbing chemically synthesized silver nanocubes onto a nanoscale-thick polymer spacer layer on a gold film, making no effort to control the spatial arrangement of the cubes on the film. We show that the film-coupled nanocubes provide a reflectance spectrum that can be tailored by varying the geometry (the size of the cubes and/or the thickness of the spacer). Each nanocube is the optical analogue of a grounded patch antenna, with a nearly identical local field structure that is modified by the plasmonic response of the metal’s dielectric function, and with an anomalously large absorption efficiency that can be partly attributed to an interferometric effect10. The absorptivity of large surface areas can be controlled using this method, at scales out of reach of lithographic approaches (such as electron-beam lithography) that are otherwise required to manipulate matter on the nanoscale." @default.
- W2005173952 created "2016-06-24" @default.
- W2005173952 creator A5011079707 @default.
- W2005173952 creator A5027647706 @default.
- W2005173952 creator A5040657884 @default.
- W2005173952 creator A5042580914 @default.
- W2005173952 creator A5049472213 @default.
- W2005173952 creator A5064598775 @default.
- W2005173952 creator A5073957093 @default.
- W2005173952 creator A5081133789 @default.
- W2005173952 date "2012-12-01" @default.
- W2005173952 modified "2023-10-17" @default.
- W2005173952 title "Controlled-reflectance surfaces with film-coupled colloidal nanoantennas" @default.
- W2005173952 cites W1609000585 @default.
- W2005173952 cites W1973714168 @default.
- W2005173952 cites W1974266432 @default.
- W2005173952 cites W1975881046 @default.
- W2005173952 cites W1976809055 @default.
- W2005173952 cites W1982161876 @default.
- W2005173952 cites W1989278675 @default.
- W2005173952 cites W1990316185 @default.
- W2005173952 cites W1999737983 @default.
- W2005173952 cites W2005872370 @default.
- W2005173952 cites W2023523821 @default.
- W2005173952 cites W2024786641 @default.
- W2005173952 cites W2028705946 @default.
- W2005173952 cites W2051569513 @default.
- W2005173952 cites W2058208824 @default.
- W2005173952 cites W2059214653 @default.
- W2005173952 cites W2075061068 @default.
- W2005173952 cites W2092729824 @default.
- W2005173952 cites W2094393199 @default.
- W2005173952 cites W2117208350 @default.
- W2005173952 cites W2121607567 @default.
- W2005173952 cites W2137938289 @default.
- W2005173952 cites W2139743549 @default.
- W2005173952 cites W2149509650 @default.
- W2005173952 cites W2152923907 @default.
- W2005173952 cites W2167877463 @default.
- W2005173952 cites W3098852118 @default.
- W2005173952 cites W3101852235 @default.
- W2005173952 cites W3104916898 @default.
- W2005173952 doi "https://doi.org/10.1038/nature11615" @default.
- W2005173952 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3584706" @default.
- W2005173952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23222613" @default.
- W2005173952 hasPublicationYear "2012" @default.
- W2005173952 type Work @default.
- W2005173952 sameAs 2005173952 @default.
- W2005173952 citedByCount "628" @default.
- W2005173952 countsByYear W20051739522012 @default.
- W2005173952 countsByYear W20051739522013 @default.
- W2005173952 countsByYear W20051739522014 @default.
- W2005173952 countsByYear W20051739522015 @default.
- W2005173952 countsByYear W20051739522016 @default.
- W2005173952 countsByYear W20051739522017 @default.
- W2005173952 countsByYear W20051739522018 @default.
- W2005173952 countsByYear W20051739522019 @default.
- W2005173952 countsByYear W20051739522020 @default.
- W2005173952 countsByYear W20051739522021 @default.
- W2005173952 countsByYear W20051739522022 @default.
- W2005173952 countsByYear W20051739522023 @default.
- W2005173952 crossrefType "journal-article" @default.
- W2005173952 hasAuthorship W2005173952A5011079707 @default.
- W2005173952 hasAuthorship W2005173952A5027647706 @default.
- W2005173952 hasAuthorship W2005173952A5040657884 @default.
- W2005173952 hasAuthorship W2005173952A5042580914 @default.
- W2005173952 hasAuthorship W2005173952A5049472213 @default.
- W2005173952 hasAuthorship W2005173952A5064598775 @default.
- W2005173952 hasAuthorship W2005173952A5073957093 @default.
- W2005173952 hasAuthorship W2005173952A5081133789 @default.
- W2005173952 hasBestOaLocation W20051739522 @default.
- W2005173952 hasConcept C104663316 @default.
- W2005173952 hasConcept C110367647 @default.
- W2005173952 hasConcept C110879396 @default.
- W2005173952 hasConcept C117537405 @default.
- W2005173952 hasConcept C120665830 @default.
- W2005173952 hasConcept C121332964 @default.
- W2005173952 hasConcept C125287762 @default.
- W2005173952 hasConcept C136676167 @default.
- W2005173952 hasConcept C159985019 @default.
- W2005173952 hasConcept C163651212 @default.
- W2005173952 hasConcept C171250308 @default.
- W2005173952 hasConcept C192562407 @default.
- W2005173952 hasConcept C199360897 @default.
- W2005173952 hasConcept C204223013 @default.
- W2005173952 hasConcept C41008148 @default.
- W2005173952 hasConcept C46918542 @default.
- W2005173952 hasConcept C49040817 @default.
- W2005173952 hasConcept C65682993 @default.
- W2005173952 hasConceptScore W2005173952C104663316 @default.
- W2005173952 hasConceptScore W2005173952C110367647 @default.
- W2005173952 hasConceptScore W2005173952C110879396 @default.
- W2005173952 hasConceptScore W2005173952C117537405 @default.
- W2005173952 hasConceptScore W2005173952C120665830 @default.
- W2005173952 hasConceptScore W2005173952C121332964 @default.
- W2005173952 hasConceptScore W2005173952C125287762 @default.
- W2005173952 hasConceptScore W2005173952C136676167 @default.
- W2005173952 hasConceptScore W2005173952C159985019 @default.