Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005183150> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2005183150 abstract "The concept of isotopy plays an extremely important role in the structure theory of simple quadratic Jordan algebras satisfying the minimum condition on principal inner ideals. We take Koecher's characterization of isotopy and use it as the basis of a definition of semi-isotopy. It is clear that semi-isotopies induce, in a natural way, automorphisms of the lattice of inner ideals. We concern ourselves with the converse problem; namely, if 71 is a semilinear bijection of a quadratic Jordan algebra such that 71 induces an automorphism of the lattice of inner ideals, is 71 necessarily a semiisotopy? We answer the above question in the affirmative for a large class of simple quadratic Jordan algebras satisfying the minimum condition on principal inner ideals (said class includes all such algebras of capacity at least three over fields of characteristic unequal to two). Moreover, we prove that the only such maps which induce the identity automorphism on the lattice are the scalar multiplications. 1. Preliminaries. In this paper, we continue our study of automorphisms of the lattice of inner ideals of simple quadratic Jordan algebras begun in our earlier paper [7]. In that paper, attention was focused on determining the automorphism group of the lattice of inner ideals and on determining under what conditions two algebras can have isomorphic lattices of inner ideals. In the present paper our attention is focused on determining which semilinear bijections of a simple quadratic Jordan algebra satisfying the minimum condition on principal inner ideals induce automorphisms of the lattice of inner ideals. We will freely make use of our earlier results and of McCrimmon's determination of the inner ideals for the algebras under consideration [9]. The concept of an isotope of a quadratic Jordan algebra plays an extremely important role in the structure theory (see [3] ). One defines an isotopy to be an isomorphism of a quadratic Jordan algebra onto an isotope. Received by the editors July 20, 1973. AMS (MOS) subject classifications (1970). Primary 17C20, 17C30; Secondary 16A68." @default.
- W2005183150 created "2016-06-24" @default.
- W2005183150 creator A5060081140 @default.
- W2005183150 date "1974-01-01" @default.
- W2005183150 modified "2023-09-22" @default.
- W2005183150 title "Semi-isotopies and the lattice of inner ideals of certain quadratic Jordan algebras" @default.
- W2005183150 cites W1963652265 @default.
- W2005183150 cites W1996691445 @default.
- W2005183150 cites W2025297246 @default.
- W2005183150 cites W2033117386 @default.
- W2005183150 cites W2107789073 @default.
- W2005183150 cites W3156101450 @default.
- W2005183150 cites W655445672 @default.
- W2005183150 doi "https://doi.org/10.1090/s0002-9947-1974-0349774-8" @default.
- W2005183150 hasPublicationYear "1974" @default.
- W2005183150 type Work @default.
- W2005183150 sameAs 2005183150 @default.
- W2005183150 citedByCount "1" @default.
- W2005183150 crossrefType "journal-article" @default.
- W2005183150 hasAuthorship W2005183150A5060081140 @default.
- W2005183150 hasBestOaLocation W20051831501 @default.
- W2005183150 hasConcept C100376341 @default.
- W2005183150 hasConcept C104736235 @default.
- W2005183150 hasConcept C111472728 @default.
- W2005183150 hasConcept C118712358 @default.
- W2005183150 hasConcept C121332964 @default.
- W2005183150 hasConcept C129844170 @default.
- W2005183150 hasConcept C136119220 @default.
- W2005183150 hasConcept C138885662 @default.
- W2005183150 hasConcept C14394260 @default.
- W2005183150 hasConcept C202444582 @default.
- W2005183150 hasConcept C24890656 @default.
- W2005183150 hasConcept C2524010 @default.
- W2005183150 hasConcept C2780586882 @default.
- W2005183150 hasConcept C2781204021 @default.
- W2005183150 hasConcept C33923547 @default.
- W2005183150 hasConcept C518143113 @default.
- W2005183150 hasConceptScore W2005183150C100376341 @default.
- W2005183150 hasConceptScore W2005183150C104736235 @default.
- W2005183150 hasConceptScore W2005183150C111472728 @default.
- W2005183150 hasConceptScore W2005183150C118712358 @default.
- W2005183150 hasConceptScore W2005183150C121332964 @default.
- W2005183150 hasConceptScore W2005183150C129844170 @default.
- W2005183150 hasConceptScore W2005183150C136119220 @default.
- W2005183150 hasConceptScore W2005183150C138885662 @default.
- W2005183150 hasConceptScore W2005183150C14394260 @default.
- W2005183150 hasConceptScore W2005183150C202444582 @default.
- W2005183150 hasConceptScore W2005183150C24890656 @default.
- W2005183150 hasConceptScore W2005183150C2524010 @default.
- W2005183150 hasConceptScore W2005183150C2780586882 @default.
- W2005183150 hasConceptScore W2005183150C2781204021 @default.
- W2005183150 hasConceptScore W2005183150C33923547 @default.
- W2005183150 hasConceptScore W2005183150C518143113 @default.
- W2005183150 hasLocation W20051831501 @default.
- W2005183150 hasOpenAccess W2005183150 @default.
- W2005183150 hasPrimaryLocation W20051831501 @default.
- W2005183150 hasRelatedWork W1523236311 @default.
- W2005183150 hasRelatedWork W1559235791 @default.
- W2005183150 hasRelatedWork W1984596956 @default.
- W2005183150 hasRelatedWork W1996691445 @default.
- W2005183150 hasRelatedWork W2044386081 @default.
- W2005183150 hasRelatedWork W2060697434 @default.
- W2005183150 hasRelatedWork W2061787485 @default.
- W2005183150 hasRelatedWork W2083665801 @default.
- W2005183150 hasRelatedWork W2090727204 @default.
- W2005183150 hasRelatedWork W2090840471 @default.
- W2005183150 hasRelatedWork W2155405738 @default.
- W2005183150 hasRelatedWork W2330792908 @default.
- W2005183150 hasRelatedWork W2604497936 @default.
- W2005183150 hasRelatedWork W2951781890 @default.
- W2005183150 hasRelatedWork W2952589983 @default.
- W2005183150 hasRelatedWork W2963036019 @default.
- W2005183150 hasRelatedWork W2963409408 @default.
- W2005183150 hasRelatedWork W2981298237 @default.
- W2005183150 hasRelatedWork W3103444024 @default.
- W2005183150 hasRelatedWork W3129143049 @default.
- W2005183150 isParatext "false" @default.
- W2005183150 isRetracted "false" @default.
- W2005183150 magId "2005183150" @default.
- W2005183150 workType "article" @default.