Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005193238> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2005193238 endingPage "1826" @default.
- W2005193238 startingPage "1817" @default.
- W2005193238 abstract "Pressure–volume–temperature properties are very important in the reservoir engineering computations. There are many empirical approaches for predicting various PVT properties based on empirical correlations and statistical regression models. Last decade, researchers utilized neural networks to develop more accurate PVT correlations. These achievements of neural networks open the door to data mining techniques to play a major role in oil and gas industry. Unfortunately, the developed neural networks correlations are often limited, and global correlations are usually less accurate compared to local correlations. Recently, adaptive neuro-fuzzy inference systems have been proposed as a new intelligence framework for both prediction and classification based on fuzzy clustering optimization criterion and ranking. This paper proposes neuro-fuzzy inference systems for estimating PVT properties of crude oil systems. This new framework is an efficient hybrid intelligence machine learning scheme for modeling the kind of uncertainty associated with vagueness and imprecision. We briefly describe the learning steps and the use of the Takagi Sugeno and Kang model and Gustafson–Kessel clustering algorithm with K-detected clusters from the given database. It has featured in a wide range of medical, power control system, and business journals, often with promising results. A comparative study will be carried out to compare their performance of this new framework with the most popular modeling techniques, such as neural networks, nonlinear regression, and the empirical correlations algorithms. The results show that the performance of neuro-fuzzy systems is accurate, reliable, and outperform most of the existing forecasting techniques. Future work can be achieved by using neuro-fuzzy systems for clustering the 3D seismic data, identification of lithofacies types, and other reservoir characterization." @default.
- W2005193238 created "2016-06-24" @default.
- W2005193238 creator A5081760181 @default.
- W2005193238 date "2009-09-01" @default.
- W2005193238 modified "2023-09-26" @default.
- W2005193238 title "Data mining in forecasting PVT correlations of crude oil systems based on Type1 fuzzy logic inference systems" @default.
- W2005193238 cites W1964868025 @default.
- W2005193238 cites W1967665138 @default.
- W2005193238 cites W1970289169 @default.
- W2005193238 cites W1977554350 @default.
- W2005193238 cites W1984863600 @default.
- W2005193238 cites W1988555071 @default.
- W2005193238 cites W1990476081 @default.
- W2005193238 cites W1995598995 @default.
- W2005193238 cites W1999585799 @default.
- W2005193238 cites W2024986448 @default.
- W2005193238 cites W2026226344 @default.
- W2005193238 cites W2032471139 @default.
- W2005193238 cites W2032741416 @default.
- W2005193238 cites W2052368800 @default.
- W2005193238 cites W2055571659 @default.
- W2005193238 cites W2056495551 @default.
- W2005193238 cites W2067607655 @default.
- W2005193238 cites W2077052111 @default.
- W2005193238 cites W2079493731 @default.
- W2005193238 cites W2083912025 @default.
- W2005193238 cites W2087814009 @default.
- W2005193238 cites W2089380165 @default.
- W2005193238 cites W2106562019 @default.
- W2005193238 cites W4238835443 @default.
- W2005193238 cites W4254683938 @default.
- W2005193238 doi "https://doi.org/10.1016/j.cageo.2007.10.016" @default.
- W2005193238 hasPublicationYear "2009" @default.
- W2005193238 type Work @default.
- W2005193238 sameAs 2005193238 @default.
- W2005193238 citedByCount "19" @default.
- W2005193238 countsByYear W20051932382012 @default.
- W2005193238 countsByYear W20051932382013 @default.
- W2005193238 countsByYear W20051932382014 @default.
- W2005193238 countsByYear W20051932382015 @default.
- W2005193238 countsByYear W20051932382016 @default.
- W2005193238 countsByYear W20051932382018 @default.
- W2005193238 countsByYear W20051932382019 @default.
- W2005193238 countsByYear W20051932382020 @default.
- W2005193238 countsByYear W20051932382021 @default.
- W2005193238 countsByYear W20051932382022 @default.
- W2005193238 crossrefType "journal-article" @default.
- W2005193238 hasAuthorship W2005193238A5081760181 @default.
- W2005193238 hasConcept C119857082 @default.
- W2005193238 hasConcept C124101348 @default.
- W2005193238 hasConcept C154945302 @default.
- W2005193238 hasConcept C186108316 @default.
- W2005193238 hasConcept C195975749 @default.
- W2005193238 hasConcept C2776825360 @default.
- W2005193238 hasConcept C29470771 @default.
- W2005193238 hasConcept C41008148 @default.
- W2005193238 hasConcept C50644808 @default.
- W2005193238 hasConcept C58166 @default.
- W2005193238 hasConcept C73555534 @default.
- W2005193238 hasConceptScore W2005193238C119857082 @default.
- W2005193238 hasConceptScore W2005193238C124101348 @default.
- W2005193238 hasConceptScore W2005193238C154945302 @default.
- W2005193238 hasConceptScore W2005193238C186108316 @default.
- W2005193238 hasConceptScore W2005193238C195975749 @default.
- W2005193238 hasConceptScore W2005193238C2776825360 @default.
- W2005193238 hasConceptScore W2005193238C29470771 @default.
- W2005193238 hasConceptScore W2005193238C41008148 @default.
- W2005193238 hasConceptScore W2005193238C50644808 @default.
- W2005193238 hasConceptScore W2005193238C58166 @default.
- W2005193238 hasConceptScore W2005193238C73555534 @default.
- W2005193238 hasIssue "9" @default.
- W2005193238 hasLocation W20051932381 @default.
- W2005193238 hasOpenAccess W2005193238 @default.
- W2005193238 hasPrimaryLocation W20051932381 @default.
- W2005193238 hasRelatedWork W1822851171 @default.
- W2005193238 hasRelatedWork W2018980971 @default.
- W2005193238 hasRelatedWork W2078755112 @default.
- W2005193238 hasRelatedWork W2135891541 @default.
- W2005193238 hasRelatedWork W2164589519 @default.
- W2005193238 hasRelatedWork W2354264663 @default.
- W2005193238 hasRelatedWork W3015687126 @default.
- W2005193238 hasRelatedWork W32657058 @default.
- W2005193238 hasRelatedWork W4310906510 @default.
- W2005193238 hasRelatedWork W591834135 @default.
- W2005193238 hasVolume "35" @default.
- W2005193238 isParatext "false" @default.
- W2005193238 isRetracted "false" @default.
- W2005193238 magId "2005193238" @default.
- W2005193238 workType "article" @default.