Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005303713> ?p ?o ?g. }
- W2005303713 endingPage "47" @default.
- W2005303713 startingPage "37" @default.
- W2005303713 abstract "We compared photosynthetic gas exchange, the photosynthesis–leaf nitrogen (N) relationship, and growth response to nutrient enrichment in the invasive wetland grass Glyceria maxima (Hartman) Holmburg with two native New Zealand Carex sedges (C. virgata Boott and C. secta Boott), to explore the ecophysiological traits contributing to invasive behaviour. The photosynthesis–nitrogen relationship was uniform across all three species, and the maximum light-saturated rate of photosynthesis expressed on a leaf area basis (Amaxa) did not differ significantly between species. However, specific leaf area (SLA) in G. maxima (17 ± 6 m2 kg−1) was 1.3 times that of the sedges, leading to 1.4 times higher maximum rates of photosynthesis (350–400 nmol CO2 g−1 dry mass s−1) expressed on a leaf mass basis (Amaxm) when N supply was unlimited, compared to the sedges (<300 nmol CO2 g−1 dry mass s−1). Analysis of Covariance (ANCOVA) revealed significant positive relationships between leaf N content and chlorophyll a:b ratios, stomatal conductance (gs), dark respiration rate (Rd), and the photosynthetic light saturation point (Ik) in G. maxima, but not in the sedges. ANCOVA also identified that, compared to G. maxima, the sedges had 2.4 times higher intrinsic water use efficiency (A/gs: range 20–70 cf. 8–30 μmol CO2 mol−1 H2O) and 1.6 times higher nitrogen use efficiency (NUE: 25–30 cf. 20–23 g dry mass g−1 N) under excess N supply. Relative growth rates (RGR) were not significantly higher in G. maxima than the sedges, but correlations between leaf N, gas exchange parameters (Amaxa, Amaxm, Rd and gs) and RGR were all highly significant in G. maxima, whereas they were weak or absent in the sedges. Allocation of biomass (root:shoot ratio, leaf mass ratio, root mass ratio), plant N and P content, and allocation of N to leaves all showed significantly greater phenotypic plasticity and stronger correlation to final biomass in G. maxima than in the sedges. We therefore conclude that photosynthesis and growth rates are not intrinsically higher in this invader than in the native species with which it competes, but that its success under nutrient enrichment is a consequence of greater physiological responsiveness and growth plasticity, and stronger integration between gas exchange and growth, coupled with indifference to resource wastage (i.e. low WUE and NUE) at high nutrient supply. The poorer performance of G. maxima than the sedges under low nutrient supply supports the importance of nutrient management, especially N, as a strategy to minimise the invasive behaviour of fast-growing herbaceous species in wetlands." @default.
- W2005303713 created "2016-06-24" @default.
- W2005303713 creator A5054790596 @default.
- W2005303713 creator A5059332660 @default.
- W2005303713 creator A5059763934 @default.
- W2005303713 creator A5069839892 @default.
- W2005303713 creator A5081376194 @default.
- W2005303713 date "2012-10-01" @default.
- W2005303713 modified "2023-09-26" @default.
- W2005303713 title "Gas exchange and growth responses to nutrient enrichment in invasive Glyceria maxima and native New Zealand Carex species" @default.
- W2005303713 cites W1529623398 @default.
- W2005303713 cites W1572650998 @default.
- W2005303713 cites W1589123130 @default.
- W2005303713 cites W1946277022 @default.
- W2005303713 cites W1967176808 @default.
- W2005303713 cites W1968158613 @default.
- W2005303713 cites W1970011939 @default.
- W2005303713 cites W1977777744 @default.
- W2005303713 cites W1987294259 @default.
- W2005303713 cites W2009225369 @default.
- W2005303713 cites W2011532864 @default.
- W2005303713 cites W2012850835 @default.
- W2005303713 cites W2024733582 @default.
- W2005303713 cites W2024951824 @default.
- W2005303713 cites W2027815129 @default.
- W2005303713 cites W2035251740 @default.
- W2005303713 cites W2039904019 @default.
- W2005303713 cites W2042356857 @default.
- W2005303713 cites W2044632284 @default.
- W2005303713 cites W2059923021 @default.
- W2005303713 cites W2073792014 @default.
- W2005303713 cites W2074559187 @default.
- W2005303713 cites W2075497788 @default.
- W2005303713 cites W2076775069 @default.
- W2005303713 cites W2089646396 @default.
- W2005303713 cites W2089785717 @default.
- W2005303713 cites W2095048425 @default.
- W2005303713 cites W2096984801 @default.
- W2005303713 cites W2109814966 @default.
- W2005303713 cites W2114557570 @default.
- W2005303713 cites W2115942379 @default.
- W2005303713 cites W2129123738 @default.
- W2005303713 cites W2134898218 @default.
- W2005303713 cites W2137851267 @default.
- W2005303713 cites W2137947718 @default.
- W2005303713 cites W2140991335 @default.
- W2005303713 cites W2151968140 @default.
- W2005303713 cites W2154511108 @default.
- W2005303713 cites W2155490215 @default.
- W2005303713 cites W2158397069 @default.
- W2005303713 cites W2163521665 @default.
- W2005303713 cites W2167644187 @default.
- W2005303713 cites W2173600161 @default.
- W2005303713 cites W2175215465 @default.
- W2005303713 cites W2181025007 @default.
- W2005303713 cites W2316272549 @default.
- W2005303713 cites W2498737153 @default.
- W2005303713 cites W259351776 @default.
- W2005303713 doi "https://doi.org/10.1016/j.aquabot.2012.05.008" @default.
- W2005303713 hasPublicationYear "2012" @default.
- W2005303713 type Work @default.
- W2005303713 sameAs 2005303713 @default.
- W2005303713 citedByCount "7" @default.
- W2005303713 countsByYear W20053037132014 @default.
- W2005303713 countsByYear W20053037132015 @default.
- W2005303713 countsByYear W20053037132016 @default.
- W2005303713 countsByYear W20053037132018 @default.
- W2005303713 countsByYear W20053037132020 @default.
- W2005303713 countsByYear W20053037132022 @default.
- W2005303713 crossrefType "journal-article" @default.
- W2005303713 hasAuthorship W2005303713A5054790596 @default.
- W2005303713 hasAuthorship W2005303713A5059332660 @default.
- W2005303713 hasAuthorship W2005303713A5059763934 @default.
- W2005303713 hasAuthorship W2005303713A5069839892 @default.
- W2005303713 hasAuthorship W2005303713A5081376194 @default.
- W2005303713 hasConcept C150668497 @default.
- W2005303713 hasConcept C178790620 @default.
- W2005303713 hasConcept C183688256 @default.
- W2005303713 hasConcept C185592680 @default.
- W2005303713 hasConcept C2524010 @default.
- W2005303713 hasConcept C2776373379 @default.
- W2005303713 hasConcept C2776615292 @default.
- W2005303713 hasConcept C2777692458 @default.
- W2005303713 hasConcept C2778169228 @default.
- W2005303713 hasConcept C2778312390 @default.
- W2005303713 hasConcept C2778556696 @default.
- W2005303713 hasConcept C2778902199 @default.
- W2005303713 hasConcept C2781045423 @default.
- W2005303713 hasConcept C33923547 @default.
- W2005303713 hasConcept C46757340 @default.
- W2005303713 hasConcept C537208039 @default.
- W2005303713 hasConcept C59822182 @default.
- W2005303713 hasConcept C86803240 @default.
- W2005303713 hasConceptScore W2005303713C150668497 @default.
- W2005303713 hasConceptScore W2005303713C178790620 @default.
- W2005303713 hasConceptScore W2005303713C183688256 @default.
- W2005303713 hasConceptScore W2005303713C185592680 @default.
- W2005303713 hasConceptScore W2005303713C2524010 @default.