Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005441409> ?p ?o ?g. }
- W2005441409 endingPage "1996" @default.
- W2005441409 startingPage "1983" @default.
- W2005441409 abstract "The rapid development of 3D technology and computer vision applications has motivated a thrust of methodologies for depth acquisition and estimation. However, existing hardware and software acquisition methods have limited performance due to poor depth precision, low resolution, and high computational cost. In this paper, we present a computationally efficient method to estimate dense depth maps from sparse measurements. There are three main contributions. First, we provide empirical evidence that depth maps can be encoded much more sparsely than natural images using common dictionaries, such as wavelets and contourlets. We also show that a combined wavelet-contourlet dictionary achieves better performance than using either dictionary alone. Second, we propose an alternating direction method of multipliers (ADMM) for depth map reconstruction. A multiscale warm start procedure is proposed to speed up the convergence. Third, we propose a two-stage randomized sampling scheme to optimally choose the sampling locations, thus maximizing the reconstruction performance for a given sampling budget. Experimental results show that the proposed method produces high-quality dense depth estimates, and is robust to noisy measurements. Applications to real data in stereo matching are demonstrated." @default.
- W2005441409 created "2016-06-24" @default.
- W2005441409 creator A5002282875 @default.
- W2005441409 creator A5007938446 @default.
- W2005441409 creator A5046651975 @default.
- W2005441409 date "2015-06-01" @default.
- W2005441409 modified "2023-10-17" @default.
- W2005441409 title "Depth Reconstruction From Sparse Samples: Representation, Algorithm, and Sampling" @default.
- W2005441409 cites W1953936588 @default.
- W2005441409 cites W1964458689 @default.
- W2005441409 cites W1967027087 @default.
- W2005441409 cites W1971918169 @default.
- W2005441409 cites W1979072167 @default.
- W2005441409 cites W1983426146 @default.
- W2005441409 cites W1996126470 @default.
- W2005441409 cites W1998748785 @default.
- W2005441409 cites W2002240881 @default.
- W2005441409 cites W2005441409 @default.
- W2005441409 cites W2024738905 @default.
- W2005441409 cites W2029026810 @default.
- W2005441409 cites W2030449718 @default.
- W2005441409 cites W2033819227 @default.
- W2005441409 cites W2053286848 @default.
- W2005441409 cites W2058532290 @default.
- W2005441409 cites W2069912449 @default.
- W2005441409 cites W2079495650 @default.
- W2005441409 cites W2086961060 @default.
- W2005441409 cites W2091505087 @default.
- W2005441409 cites W2093117706 @default.
- W2005441409 cites W2095614026 @default.
- W2005441409 cites W2099641086 @default.
- W2005441409 cites W2104599718 @default.
- W2005441409 cites W2104620097 @default.
- W2005441409 cites W2104974755 @default.
- W2005441409 cites W2107844156 @default.
- W2005441409 cites W2112421488 @default.
- W2005441409 cites W2112731915 @default.
- W2005441409 cites W2114122776 @default.
- W2005441409 cites W2117853853 @default.
- W2005441409 cites W2119667497 @default.
- W2005441409 cites W2121942758 @default.
- W2005441409 cites W2122712590 @default.
- W2005441409 cites W2124319230 @default.
- W2005441409 cites W2128989367 @default.
- W2005441409 cites W2132686817 @default.
- W2005441409 cites W2134072810 @default.
- W2005441409 cites W2137198385 @default.
- W2005441409 cites W2155390387 @default.
- W2005441409 cites W2160547390 @default.
- W2005441409 cites W2160979406 @default.
- W2005441409 cites W2167839759 @default.
- W2005441409 cites W2169899245 @default.
- W2005441409 cites W2536680313 @default.
- W2005441409 cites W4292363360 @default.
- W2005441409 doi "https://doi.org/10.1109/tip.2015.2409551" @default.
- W2005441409 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25769151" @default.
- W2005441409 hasPublicationYear "2015" @default.
- W2005441409 type Work @default.
- W2005441409 sameAs 2005441409 @default.
- W2005441409 citedByCount "92" @default.
- W2005441409 countsByYear W20054414092015 @default.
- W2005441409 countsByYear W20054414092016 @default.
- W2005441409 countsByYear W20054414092017 @default.
- W2005441409 countsByYear W20054414092018 @default.
- W2005441409 countsByYear W20054414092019 @default.
- W2005441409 countsByYear W20054414092020 @default.
- W2005441409 countsByYear W20054414092021 @default.
- W2005441409 countsByYear W20054414092022 @default.
- W2005441409 countsByYear W20054414092023 @default.
- W2005441409 crossrefType "journal-article" @default.
- W2005441409 hasAuthorship W2005441409A5002282875 @default.
- W2005441409 hasAuthorship W2005441409A5007938446 @default.
- W2005441409 hasAuthorship W2005441409A5046651975 @default.
- W2005441409 hasBestOaLocation W20054414091 @default.
- W2005441409 hasConcept C106131492 @default.
- W2005441409 hasConcept C11413529 @default.
- W2005441409 hasConcept C115961682 @default.
- W2005441409 hasConcept C124066611 @default.
- W2005441409 hasConcept C124851039 @default.
- W2005441409 hasConcept C140779682 @default.
- W2005441409 hasConcept C141268832 @default.
- W2005441409 hasConcept C141379421 @default.
- W2005441409 hasConcept C153180895 @default.
- W2005441409 hasConcept C154945302 @default.
- W2005441409 hasConcept C156872377 @default.
- W2005441409 hasConcept C162324750 @default.
- W2005441409 hasConcept C196216189 @default.
- W2005441409 hasConcept C20479862 @default.
- W2005441409 hasConcept C2777303404 @default.
- W2005441409 hasConcept C31972630 @default.
- W2005441409 hasConcept C41008148 @default.
- W2005441409 hasConcept C47432892 @default.
- W2005441409 hasConcept C50522688 @default.
- W2005441409 hasConceptScore W2005441409C106131492 @default.
- W2005441409 hasConceptScore W2005441409C11413529 @default.
- W2005441409 hasConceptScore W2005441409C115961682 @default.
- W2005441409 hasConceptScore W2005441409C124066611 @default.
- W2005441409 hasConceptScore W2005441409C124851039 @default.