Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005463955> ?p ?o ?g. }
- W2005463955 endingPage "15" @default.
- W2005463955 startingPage "1" @default.
- W2005463955 abstract "Accurate and compact integral-transform wave functions are constructed for the $1^{1}S$ state of the helium-like ions from ${mathrm{H}}^{ensuremath{-}}$ through ${mathrm{Mg}}^{10+}$. The variational ansatz is of the form $ensuremath{Psi}({r}_{1}, {r}_{2}, {r}_{12})={(4ensuremath{pi})}^{ensuremath{-}1}{ensuremath{Sigma}}_{k=1}^{N}{c}_{k}(1+{P}_{12})mathrm{exp}(ensuremath{-}{ensuremath{alpha}}_{k}{r}_{1}ensuremath{-}{ensuremath{beta}}_{k}{r}_{2}ensuremath{-}{ensuremath{gamma}}_{k}{r}_{12})$ where the ${c}_{k}$ are found by solving the secular equation and the exponents ${ensuremath{alpha}}_{k}$, ${ensuremath{beta}}_{k}$, and ${ensuremath{gamma}}_{k}$ are chosen to be the abscissas of Monte Carlo and number-theoretic quadrature formulas for a variationally optimized parallelotope in $ensuremath{alpha}ensuremath{-}ensuremath{beta}ensuremath{-}ensuremath{gamma}$ space. A 66-term function of this type for the helium atom yields an energy of -2.903 724363 a.u. as compared with the 1078-term function of Pekeris which yields an energy of -2.903 724376 a.u. In order to test the accuracy of the wave functions a number of properties including $〈{r}^{n}〉$ and $〈{r}_{12}^{n}〉$ with $n=ensuremath{-}2, ensuremath{-}1, 1, dots{}, 4$, $〈{stackrel{ensuremath{rightarrow}}{mathrm{r}}}_{1}ifmmodecdotelsetextperiodcenteredfi{}{stackrel{ensuremath{rightarrow}}{mathrm{r}}}_{2}〉$, $〈{cosensuremath{theta}}_{12}〉$, $〈ensuremath{delta}({stackrel{ensuremath{rightarrow}}{mathrm{r}}}_{1})〉$, and $〈ensuremath{delta}({stackrel{ensuremath{rightarrow}}{mathrm{r}}}_{12})〉$ are computed and compared with the best available results. The electric dipole polarizability is computed from a simple formula due to Thorhallsson, Fisk, and Fraga. Comments on the limiting accuracy of this formula are made. Electron-nuclear and electron-electron cusp condition tests are made for the functions. Detailed convergence studies are presented for ${mathrm{H}}^{ensuremath{-}}$ and He in the form of a sequence of functions with increasing $N$. The functions are found to be rather accurate and more compact than any other functions available in the literature with the exception of those containing logarithmic terms. Possible refinements to the basis set used are discussed." @default.
- W2005463955 created "2016-06-24" @default.
- W2005463955 creator A5051630394 @default.
- W2005463955 creator A5061441930 @default.
- W2005463955 date "1977-01-01" @default.
- W2005463955 modified "2023-10-16" @default.
- W2005463955 title "Compact and accurate integral-transform wave functions. I. The<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mn>1</mml:mn><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>state of the helium-like ions from<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mrow><mml:msup><mml:mrow><…" @default.
- W2005463955 cites W1965352424 @default.
- W2005463955 cites W1965892317 @default.
- W2005463955 cites W1966364339 @default.
- W2005463955 cites W1966733726 @default.
- W2005463955 cites W1966740451 @default.
- W2005463955 cites W1967319789 @default.
- W2005463955 cites W1970474714 @default.
- W2005463955 cites W1971054911 @default.
- W2005463955 cites W1971422892 @default.
- W2005463955 cites W1973693973 @default.
- W2005463955 cites W1973732379 @default.
- W2005463955 cites W1973799503 @default.
- W2005463955 cites W1977482997 @default.
- W2005463955 cites W1978588083 @default.
- W2005463955 cites W1980585959 @default.
- W2005463955 cites W1980840110 @default.
- W2005463955 cites W1985583119 @default.
- W2005463955 cites W1985841451 @default.
- W2005463955 cites W1986751761 @default.
- W2005463955 cites W1991952201 @default.
- W2005463955 cites W1993438627 @default.
- W2005463955 cites W1996085707 @default.
- W2005463955 cites W1996108736 @default.
- W2005463955 cites W1996290894 @default.
- W2005463955 cites W1996305478 @default.
- W2005463955 cites W1997823125 @default.
- W2005463955 cites W1998039258 @default.
- W2005463955 cites W1998399936 @default.
- W2005463955 cites W1998406195 @default.
- W2005463955 cites W1998434228 @default.
- W2005463955 cites W2000586748 @default.
- W2005463955 cites W2002351104 @default.
- W2005463955 cites W2003380405 @default.
- W2005463955 cites W2007333472 @default.
- W2005463955 cites W2014209007 @default.
- W2005463955 cites W2016184293 @default.
- W2005463955 cites W2019938967 @default.
- W2005463955 cites W2022308493 @default.
- W2005463955 cites W2022443098 @default.
- W2005463955 cites W2023141555 @default.
- W2005463955 cites W2025628760 @default.
- W2005463955 cites W2028250558 @default.
- W2005463955 cites W2028892216 @default.
- W2005463955 cites W2031004104 @default.
- W2005463955 cites W2031130806 @default.
- W2005463955 cites W2031261774 @default.
- W2005463955 cites W2032134332 @default.
- W2005463955 cites W2033278298 @default.
- W2005463955 cites W2033580876 @default.
- W2005463955 cites W2033824900 @default.
- W2005463955 cites W2034046177 @default.
- W2005463955 cites W2035096574 @default.
- W2005463955 cites W2037274898 @default.
- W2005463955 cites W2038088933 @default.
- W2005463955 cites W2039559980 @default.
- W2005463955 cites W2039927037 @default.
- W2005463955 cites W2041394212 @default.
- W2005463955 cites W2046038395 @default.
- W2005463955 cites W2049269680 @default.
- W2005463955 cites W2049482190 @default.
- W2005463955 cites W2049744297 @default.
- W2005463955 cites W2051203581 @default.
- W2005463955 cites W2058562581 @default.
- W2005463955 cites W2059232683 @default.
- W2005463955 cites W2059437767 @default.
- W2005463955 cites W2059457073 @default.
- W2005463955 cites W2060380510 @default.
- W2005463955 cites W2060641684 @default.
- W2005463955 cites W2062593471 @default.
- W2005463955 cites W2064121968 @default.
- W2005463955 cites W2065880636 @default.
- W2005463955 cites W2067600085 @default.
- W2005463955 cites W2068452281 @default.
- W2005463955 cites W2068674312 @default.
- W2005463955 cites W2072225793 @default.
- W2005463955 cites W2078438762 @default.
- W2005463955 cites W2080476863 @default.
- W2005463955 cites W2080555715 @default.
- W2005463955 cites W2080567135 @default.
- W2005463955 cites W2081701222 @default.
- W2005463955 cites W2083060096 @default.
- W2005463955 cites W2086789697 @default.
- W2005463955 cites W2087296407 @default.
- W2005463955 cites W2093173804 @default.
- W2005463955 cites W2093647390 @default.
- W2005463955 cites W2095647612 @default.
- W2005463955 cites W2105645632 @default.
- W2005463955 cites W2113404447 @default.
- W2005463955 cites W2114013702 @default.
- W2005463955 cites W2117083307 @default.
- W2005463955 cites W2119633983 @default.