Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005476934> ?p ?o ?g. }
- W2005476934 endingPage "1852" @default.
- W2005476934 startingPage "1840" @default.
- W2005476934 abstract "Recent research has demonstrated that improved image segmentation can be achieved by multiple template fusion utilizing both label and intensity information. However, intensity weighted fusion approaches use local intensity similarity as a surrogate measure of local template quality for predicting target segmentation and do not seek to characterize template performance. This limits both the usefulness and accuracy of these techniques. Our work here was motivated by the observation that the local intensity similarity is a poor surrogate measure for direct comparison of the template image with the true image target segmentation. Although the true image target segmentation is not available, a high quality estimate can be inferred, and this in turn allows a principled estimate to be made of the local quality of each template at contributing to the target segmentation. We developed a fusion algorithm that uses probabilistic segmentations of the target image to simultaneously infer a reference standard segmentation of the target image and the local quality of each probabilistic segmentation. The concept of comparing templates to a hidden reference standard segmentation enables accurate assessments of the contribution of each template to inferring the target image segmentation to be made, and in practice leads to excellent target image segmentation. We have used the new algorithm for the multiple-template-based segmentation and parcellation of magnetic resonance images of the brain. Intensity and label map images of each one of the aligned templates are used to train a local Gaussian mixture model based classifier. Then, each classifier is used to compute the probabilistic segmentations of the target image. Finally, the generated probabilistic segmentations are fused together using the new fusion algorithm to obtain the segmentation of the target image. We evaluated our method in comparison to other state-of-the-art segmentation methods. We demonstrated that our new fusion algorithm has higher segmentation performance than these methods." @default.
- W2005476934 created "2016-06-24" @default.
- W2005476934 creator A5010202513 @default.
- W2005476934 creator A5054913205 @default.
- W2005476934 date "2013-10-01" @default.
- W2005476934 modified "2023-10-03" @default.
- W2005476934 title "Simultaneous Truth and Performance Level Estimation Through Fusion of Probabilistic Segmentations" @default.
- W2005476934 cites W1529873969 @default.
- W2005476934 cites W1773005811 @default.
- W2005476934 cites W1966498583 @default.
- W2005476934 cites W1967251218 @default.
- W2005476934 cites W1983147688 @default.
- W2005476934 cites W2000376553 @default.
- W2005476934 cites W2018662705 @default.
- W2005476934 cites W2031083838 @default.
- W2005476934 cites W2032377318 @default.
- W2005476934 cites W2034362312 @default.
- W2005476934 cites W2041276929 @default.
- W2005476934 cites W2045125201 @default.
- W2005476934 cites W2053984362 @default.
- W2005476934 cites W2058827966 @default.
- W2005476934 cites W2066828176 @default.
- W2005476934 cites W2066839705 @default.
- W2005476934 cites W2066923805 @default.
- W2005476934 cites W2076364662 @default.
- W2005476934 cites W2085091083 @default.
- W2005476934 cites W2100209835 @default.
- W2005476934 cites W2102214751 @default.
- W2005476934 cites W2102595307 @default.
- W2005476934 cites W2108817119 @default.
- W2005476934 cites W2118559567 @default.
- W2005476934 cites W2124984765 @default.
- W2005476934 cites W2128806031 @default.
- W2005476934 cites W2141487450 @default.
- W2005476934 cites W2148157540 @default.
- W2005476934 cites W2148347694 @default.
- W2005476934 cites W2148516771 @default.
- W2005476934 cites W2160153825 @default.
- W2005476934 cites W2163595993 @default.
- W2005476934 cites W2164971516 @default.
- W2005476934 cites W4237451364 @default.
- W2005476934 cites W4246447829 @default.
- W2005476934 doi "https://doi.org/10.1109/tmi.2013.2266258" @default.
- W2005476934 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3788853" @default.
- W2005476934 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23744673" @default.
- W2005476934 hasPublicationYear "2013" @default.
- W2005476934 type Work @default.
- W2005476934 sameAs 2005476934 @default.
- W2005476934 citedByCount "57" @default.
- W2005476934 countsByYear W20054769342014 @default.
- W2005476934 countsByYear W20054769342015 @default.
- W2005476934 countsByYear W20054769342016 @default.
- W2005476934 countsByYear W20054769342017 @default.
- W2005476934 countsByYear W20054769342018 @default.
- W2005476934 countsByYear W20054769342019 @default.
- W2005476934 countsByYear W20054769342020 @default.
- W2005476934 countsByYear W20054769342021 @default.
- W2005476934 countsByYear W20054769342022 @default.
- W2005476934 countsByYear W20054769342023 @default.
- W2005476934 crossrefType "journal-article" @default.
- W2005476934 hasAuthorship W2005476934A5010202513 @default.
- W2005476934 hasAuthorship W2005476934A5054913205 @default.
- W2005476934 hasBestOaLocation W20054769342 @default.
- W2005476934 hasConcept C124504099 @default.
- W2005476934 hasConcept C153180895 @default.
- W2005476934 hasConcept C154945302 @default.
- W2005476934 hasConcept C25694479 @default.
- W2005476934 hasConcept C31972630 @default.
- W2005476934 hasConcept C41008148 @default.
- W2005476934 hasConcept C49937458 @default.
- W2005476934 hasConcept C65885262 @default.
- W2005476934 hasConcept C89600930 @default.
- W2005476934 hasConceptScore W2005476934C124504099 @default.
- W2005476934 hasConceptScore W2005476934C153180895 @default.
- W2005476934 hasConceptScore W2005476934C154945302 @default.
- W2005476934 hasConceptScore W2005476934C25694479 @default.
- W2005476934 hasConceptScore W2005476934C31972630 @default.
- W2005476934 hasConceptScore W2005476934C41008148 @default.
- W2005476934 hasConceptScore W2005476934C49937458 @default.
- W2005476934 hasConceptScore W2005476934C65885262 @default.
- W2005476934 hasConceptScore W2005476934C89600930 @default.
- W2005476934 hasIssue "10" @default.
- W2005476934 hasLocation W20054769341 @default.
- W2005476934 hasLocation W20054769342 @default.
- W2005476934 hasLocation W20054769343 @default.
- W2005476934 hasLocation W20054769344 @default.
- W2005476934 hasOpenAccess W2005476934 @default.
- W2005476934 hasPrimaryLocation W20054769341 @default.
- W2005476934 hasRelatedWork W134976887 @default.
- W2005476934 hasRelatedWork W1669643531 @default.
- W2005476934 hasRelatedWork W1982826852 @default.
- W2005476934 hasRelatedWork W2021143974 @default.
- W2005476934 hasRelatedWork W2274529912 @default.
- W2005476934 hasRelatedWork W2384989255 @default.
- W2005476934 hasRelatedWork W2517104666 @default.
- W2005476934 hasRelatedWork W2549936415 @default.
- W2005476934 hasRelatedWork W2566648451 @default.
- W2005476934 hasRelatedWork W1967061043 @default.