Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005649664> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2005649664 endingPage "851" @default.
- W2005649664 startingPage "825" @default.
- W2005649664 abstract "The kinematical consequences of basing (classical or quantum) field theory on the conformal geometry are examined in this paper. The space in question is that of all spheres inR 4 (flat 4-space of signature (+++−)); the fundamental invariant, the angle under which two spheres intersect. In the mathematical preliminaries (§1) a convenient inhomogeneous formalism is developed, permitting the sphere to be treated as a point in a 5-dimensional Riemannian space of constant unit curvature whose length element is the infinitesimal angle between two neighboring spheres. The conformal group (proper Lorentz transformations, translations, uniform dilations, and inversions in spheres) is just the 15-parameter group of motions (metric-preserving transformations) of this space. In §2 the spheres are interpreted as finite (non localized) test particles. Physical fields are thus defined on test particles rather than (e.g. in position space) on the events occupied by these test particles alone. The spheres can be labelled either with the 5-position (test particle’s spacetime position andsize) in aq-frame, or with the 5-momentum (test particle’s 4-momentum and rest mass) in ap-frame. There exists a motion transformingq- intop-space and conversely (in other words,q- andp-observers are physically equivalent), in virtue of which any conformal theory is shown to exhibit an automaticBorn-reciprocity betweenq- andp-space. The 5-position and 5-momentum satisfy an uncertainty-relation type equation; i.e., the non-localizations inq- andp-space are in an inverse relation with Planck’s ħ measuring the intrinsic correlation. All the other motions can be built up from subgroups takingq- andp-space into themselves. These are systematically interpreted as changes of frame. Those involving relative motion representuniform relative accelerations of Lorentz observers (Lorentz group ↔ zero accelerations). Test particle mass and size are invariant under the Lorentz group but non-uniformly renormalized by the accelerative motions. In §3 the geodesics of sphere space (motion equations of (elementary) test particles) are shown to describe uniform motion in the present (force-free) case. Test particles tend to dislocalize inq space with increasing time and inp-space with increasing energy. The time-constancy of the 5-momenta, their inter-dependence as given by special relativity dynamics follow from these motion equations. Free elementary particles are shown to maintain a state of uniform velocity under all motions, in particular the accelerative ones. This contradicts ordinary relativity and suggests an experiment capable in principle of choosing between the conformal and Lorentz geometries for physics." @default.
- W2005649664 created "2016-06-24" @default.
- W2005649664 creator A5091786770 @default.
- W2005649664 date "1954-12-01" @default.
- W2005649664 modified "2023-09-27" @default.
- W2005649664 title "Conformal geometry and elementary particles" @default.
- W2005649664 cites W1983104727 @default.
- W2005649664 cites W2035777910 @default.
- W2005649664 cites W2058505341 @default.
- W2005649664 cites W2579849135 @default.
- W2005649664 doi "https://doi.org/10.1007/bf02781850" @default.
- W2005649664 hasPublicationYear "1954" @default.
- W2005649664 type Work @default.
- W2005649664 sameAs 2005649664 @default.
- W2005649664 citedByCount "24" @default.
- W2005649664 countsByYear W20056496642012 @default.
- W2005649664 crossrefType "journal-article" @default.
- W2005649664 hasAuthorship W2005649664A5091786770 @default.
- W2005649664 hasBestOaLocation W20056496642 @default.
- W2005649664 hasConcept C121332964 @default.
- W2005649664 hasConcept C1276947 @default.
- W2005649664 hasConcept C2524010 @default.
- W2005649664 hasConcept C32127712 @default.
- W2005649664 hasConcept C33923547 @default.
- W2005649664 hasConcept C37914503 @default.
- W2005649664 hasConcept C5667645 @default.
- W2005649664 hasConcept C72422203 @default.
- W2005649664 hasConcept C74650414 @default.
- W2005649664 hasConcept C98214594 @default.
- W2005649664 hasConceptScore W2005649664C121332964 @default.
- W2005649664 hasConceptScore W2005649664C1276947 @default.
- W2005649664 hasConceptScore W2005649664C2524010 @default.
- W2005649664 hasConceptScore W2005649664C32127712 @default.
- W2005649664 hasConceptScore W2005649664C33923547 @default.
- W2005649664 hasConceptScore W2005649664C37914503 @default.
- W2005649664 hasConceptScore W2005649664C5667645 @default.
- W2005649664 hasConceptScore W2005649664C72422203 @default.
- W2005649664 hasConceptScore W2005649664C74650414 @default.
- W2005649664 hasConceptScore W2005649664C98214594 @default.
- W2005649664 hasIssue "6" @default.
- W2005649664 hasLocation W20056496641 @default.
- W2005649664 hasLocation W20056496642 @default.
- W2005649664 hasOpenAccess W2005649664 @default.
- W2005649664 hasPrimaryLocation W20056496641 @default.
- W2005649664 hasRelatedWork W1577813241 @default.
- W2005649664 hasRelatedWork W1967537211 @default.
- W2005649664 hasRelatedWork W1999653047 @default.
- W2005649664 hasRelatedWork W2003415542 @default.
- W2005649664 hasRelatedWork W2041514180 @default.
- W2005649664 hasRelatedWork W2061873335 @default.
- W2005649664 hasRelatedWork W2075609157 @default.
- W2005649664 hasRelatedWork W2247199178 @default.
- W2005649664 hasRelatedWork W3118977201 @default.
- W2005649664 hasRelatedWork W3206851498 @default.
- W2005649664 hasVolume "12" @default.
- W2005649664 isParatext "false" @default.
- W2005649664 isRetracted "false" @default.
- W2005649664 magId "2005649664" @default.
- W2005649664 workType "article" @default.