Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005653120> ?p ?o ?g. }
- W2005653120 endingPage "135" @default.
- W2005653120 startingPage "127" @default.
- W2005653120 abstract "Partial Least Squares (PLS) regression is an established analytical tool in surface science, particularly for relating multivariate ToF-SIMS data to a univariate surface property. Herein we construct a PLS model using ToF-SIMS and surface energy data from a 496 copolymer micro-patterned library. Using this 496 copolymer library we investigate how changing the number of samples used to construct the PLS model affects the identity of the most influential ions identified in the regression vector. The regression coefficients vary in magnitude, but the general relationship between ion structure and surface energy is maintained. As expected, if copolymers containing monomers with unique chemistries are removed from the training set, secondary ions specific to these copolymers are not present in the regression vector. The use of PLS to obtain quantitative predictions has not been actively explored in the surface analytical field. We investigate whether the PLS model obtained can be used to predict the surface energies of polymers within and outside of the training set. The model systematically underestimated the surface energy of a group of acrylate copolymers synthesised using monomers common to the training set, but in different compositions. The predictions for a group of acrylate copolymers that were synthesised from monomers not used in the training set were very poor. When the model was used to obtain predictions for six commercially available polymers the values obtained were all close to the mean surface energy of the training set. This exercise suggests that PLS may be able to predict the surface energy of polymers synthesised from monomers common to the training set, confirming the importance that the training set reflects the chemistry of the samples to be predicted. Copyright © 2008 John Wiley & Sons, Ltd." @default.
- W2005653120 created "2016-06-24" @default.
- W2005653120 creator A5000799051 @default.
- W2005653120 creator A5004331670 @default.
- W2005653120 creator A5022310517 @default.
- W2005653120 creator A5036096394 @default.
- W2005653120 creator A5042597057 @default.
- W2005653120 creator A5089505758 @default.
- W2005653120 date "2009-02-01" @default.
- W2005653120 modified "2023-09-27" @default.
- W2005653120 title "Partial least squares regression as a powerful tool for investigating large combinatorial polymer libraries" @default.
- W2005653120 cites W1263738731 @default.
- W2005653120 cites W1495773224 @default.
- W2005653120 cites W1976251851 @default.
- W2005653120 cites W1976321281 @default.
- W2005653120 cites W1976819318 @default.
- W2005653120 cites W1979612645 @default.
- W2005653120 cites W1980211142 @default.
- W2005653120 cites W1988727613 @default.
- W2005653120 cites W1993119689 @default.
- W2005653120 cites W1997155790 @default.
- W2005653120 cites W2006895866 @default.
- W2005653120 cites W2007226914 @default.
- W2005653120 cites W2019778706 @default.
- W2005653120 cites W2021873216 @default.
- W2005653120 cites W2024266390 @default.
- W2005653120 cites W2024977515 @default.
- W2005653120 cites W2031165873 @default.
- W2005653120 cites W2031779522 @default.
- W2005653120 cites W2037094418 @default.
- W2005653120 cites W2039640825 @default.
- W2005653120 cites W2046865863 @default.
- W2005653120 cites W2047348905 @default.
- W2005653120 cites W2049059816 @default.
- W2005653120 cites W2052098523 @default.
- W2005653120 cites W2064582787 @default.
- W2005653120 cites W2079926278 @default.
- W2005653120 cites W2082210176 @default.
- W2005653120 cites W2085016403 @default.
- W2005653120 cites W2085322039 @default.
- W2005653120 cites W2137208623 @default.
- W2005653120 cites W2141783259 @default.
- W2005653120 cites W2147229870 @default.
- W2005653120 cites W2154028926 @default.
- W2005653120 cites W2158863190 @default.
- W2005653120 cites W2170371279 @default.
- W2005653120 cites W2949091778 @default.
- W2005653120 doi "https://doi.org/10.1002/sia.2969" @default.
- W2005653120 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4235767" @default.
- W2005653120 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25414534" @default.
- W2005653120 hasPublicationYear "2009" @default.
- W2005653120 type Work @default.
- W2005653120 sameAs 2005653120 @default.
- W2005653120 citedByCount "28" @default.
- W2005653120 countsByYear W20056531202012 @default.
- W2005653120 countsByYear W20056531202013 @default.
- W2005653120 countsByYear W20056531202014 @default.
- W2005653120 countsByYear W20056531202015 @default.
- W2005653120 countsByYear W20056531202016 @default.
- W2005653120 countsByYear W20056531202021 @default.
- W2005653120 countsByYear W20056531202022 @default.
- W2005653120 crossrefType "journal-article" @default.
- W2005653120 hasAuthorship W2005653120A5000799051 @default.
- W2005653120 hasAuthorship W2005653120A5004331670 @default.
- W2005653120 hasAuthorship W2005653120A5022310517 @default.
- W2005653120 hasAuthorship W2005653120A5036096394 @default.
- W2005653120 hasAuthorship W2005653120A5042597057 @default.
- W2005653120 hasAuthorship W2005653120A5089505758 @default.
- W2005653120 hasBestOaLocation W20056531201 @default.
- W2005653120 hasConcept C105795698 @default.
- W2005653120 hasConcept C147789679 @default.
- W2005653120 hasConcept C152877465 @default.
- W2005653120 hasConcept C15920480 @default.
- W2005653120 hasConcept C161584116 @default.
- W2005653120 hasConcept C178790620 @default.
- W2005653120 hasConcept C185592680 @default.
- W2005653120 hasConcept C192562407 @default.
- W2005653120 hasConcept C195839 @default.
- W2005653120 hasConcept C199163554 @default.
- W2005653120 hasConcept C22354355 @default.
- W2005653120 hasConcept C2779989194 @default.
- W2005653120 hasConcept C33923547 @default.
- W2005653120 hasConcept C521977710 @default.
- W2005653120 hasConceptScore W2005653120C105795698 @default.
- W2005653120 hasConceptScore W2005653120C147789679 @default.
- W2005653120 hasConceptScore W2005653120C152877465 @default.
- W2005653120 hasConceptScore W2005653120C15920480 @default.
- W2005653120 hasConceptScore W2005653120C161584116 @default.
- W2005653120 hasConceptScore W2005653120C178790620 @default.
- W2005653120 hasConceptScore W2005653120C185592680 @default.
- W2005653120 hasConceptScore W2005653120C192562407 @default.
- W2005653120 hasConceptScore W2005653120C195839 @default.
- W2005653120 hasConceptScore W2005653120C199163554 @default.
- W2005653120 hasConceptScore W2005653120C22354355 @default.
- W2005653120 hasConceptScore W2005653120C2779989194 @default.
- W2005653120 hasConceptScore W2005653120C33923547 @default.
- W2005653120 hasConceptScore W2005653120C521977710 @default.
- W2005653120 hasIssue "2" @default.