Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005676370> ?p ?o ?g. }
- W2005676370 endingPage "4942" @default.
- W2005676370 startingPage "4931" @default.
- W2005676370 abstract "In the present work the existence of mass transfer limitations in slurry, photocatalytic reactors is studied. Experimental validation is made in a flat plate reactor that is part of a recycling system. The reactor is described with a mathematical model previously developed [Ballari et al., 2008a. Chemical Engineering Journal 136, 50], considering a transient, two-dimensional mass balance (TDM). The complete reactor model was developed to show the existence of these effects, which result from the occurrence of concentration gradients in reaction space. They develop when these reactors are operated under some operating conditions whose effects should be always analyzed before assuming the validity of existence of perfect mixing in reaction space. Dichloroacetic acid (DCA) was the adopted model compound. To solve TDM, a kinetic expression for DCA acid was determined before under well mixed conditions [Ballari et al., 2009. Industrial and Engineering Chemistry Research 48(4), 1847]. The studied variables are flow rate, catalyst loading, and irradiation rates. The experimental data agree quite well when they are interpreted in terms of the two-dimensional model (TDM) regardless of the operating mode. The perfect mixing model (PMM), normally employed to describe this and other types of slurry photoreactors, does not have the same level of universal application; i.e. it is restricted to perfect mixing, but in many cases far simpler to use. However, it can be concluded that when the photocatalytic reaction is not fast, employing catalyst loadings below 1 g L–1, irradiation rates at the reactor wall below 1×10−6 Einstein cm−2 s−1 and good mixing operation (Re>1700) it will be always safe to assume that mass transport limitations in the bulk of the fluid are nonexistent. In a typical batch reactor the above flow conditions are equivalent to very intense mixing. If the catalyst concentration is increased, the mixing conditions should be improved in the same proportion. Within limits, higher solid loadings can be compensated with lower irradiation rates [Ballari et al., 2008a. Chemical Engineering Journal 136, 50]. In addition, with the validated model, additional simulations are shown, operating the reactor under different virtual reactor thicknesses to widen amplitude of the reached conclusions. These findings will be useful in kinetic studies to prevent incursion in certain ranges of experimental conditions that could lead to erroneous interpretation of the obtained kinetic data." @default.
- W2005676370 created "2016-06-24" @default.
- W2005676370 creator A5033284901 @default.
- W2005676370 creator A5039895812 @default.
- W2005676370 creator A5054605161 @default.
- W2005676370 date "2010-09-01" @default.
- W2005676370 modified "2023-10-09" @default.
- W2005676370 title "Mass transfer limitations in slurry photocatalytic reactors: Experimental validation" @default.
- W2005676370 cites W1963775146 @default.
- W2005676370 cites W1966386520 @default.
- W2005676370 cites W1971769772 @default.
- W2005676370 cites W1973488448 @default.
- W2005676370 cites W1975096293 @default.
- W2005676370 cites W1977358819 @default.
- W2005676370 cites W1980582084 @default.
- W2005676370 cites W1982856395 @default.
- W2005676370 cites W1984156465 @default.
- W2005676370 cites W1989332595 @default.
- W2005676370 cites W1998564190 @default.
- W2005676370 cites W2001871377 @default.
- W2005676370 cites W2002849866 @default.
- W2005676370 cites W2003687931 @default.
- W2005676370 cites W2007125678 @default.
- W2005676370 cites W2011815598 @default.
- W2005676370 cites W2025543431 @default.
- W2005676370 cites W2028835970 @default.
- W2005676370 cites W2031619889 @default.
- W2005676370 cites W2034278988 @default.
- W2005676370 cites W2036183822 @default.
- W2005676370 cites W2036529988 @default.
- W2005676370 cites W2039492560 @default.
- W2005676370 cites W2042904804 @default.
- W2005676370 cites W2050981716 @default.
- W2005676370 cites W2053629807 @default.
- W2005676370 cites W2056155106 @default.
- W2005676370 cites W2058209978 @default.
- W2005676370 cites W2063751547 @default.
- W2005676370 cites W2065602609 @default.
- W2005676370 cites W2076713607 @default.
- W2005676370 cites W2079821003 @default.
- W2005676370 cites W2082063035 @default.
- W2005676370 cites W2084041457 @default.
- W2005676370 cites W2098218316 @default.
- W2005676370 cites W2099287194 @default.
- W2005676370 cites W2102296351 @default.
- W2005676370 cites W2103778396 @default.
- W2005676370 cites W2110540540 @default.
- W2005676370 cites W2115595150 @default.
- W2005676370 cites W2126358859 @default.
- W2005676370 cites W2131175774 @default.
- W2005676370 cites W2142621983 @default.
- W2005676370 cites W2144733371 @default.
- W2005676370 cites W2147768527 @default.
- W2005676370 cites W2166740377 @default.
- W2005676370 cites W4245706080 @default.
- W2005676370 cites W9571306 @default.
- W2005676370 doi "https://doi.org/10.1016/j.ces.2010.04.021" @default.
- W2005676370 hasPublicationYear "2010" @default.
- W2005676370 type Work @default.
- W2005676370 sameAs 2005676370 @default.
- W2005676370 citedByCount "35" @default.
- W2005676370 countsByYear W20056763702012 @default.
- W2005676370 countsByYear W20056763702013 @default.
- W2005676370 countsByYear W20056763702014 @default.
- W2005676370 countsByYear W20056763702015 @default.
- W2005676370 countsByYear W20056763702017 @default.
- W2005676370 countsByYear W20056763702019 @default.
- W2005676370 countsByYear W20056763702020 @default.
- W2005676370 countsByYear W20056763702021 @default.
- W2005676370 countsByYear W20056763702022 @default.
- W2005676370 countsByYear W20056763702023 @default.
- W2005676370 crossrefType "journal-article" @default.
- W2005676370 hasAuthorship W2005676370A5033284901 @default.
- W2005676370 hasAuthorship W2005676370A5039895812 @default.
- W2005676370 hasAuthorship W2005676370A5054605161 @default.
- W2005676370 hasConcept C116915560 @default.
- W2005676370 hasConcept C121332964 @default.
- W2005676370 hasConcept C127413603 @default.
- W2005676370 hasConcept C138777275 @default.
- W2005676370 hasConcept C161790260 @default.
- W2005676370 hasConcept C175113610 @default.
- W2005676370 hasConcept C178790620 @default.
- W2005676370 hasConcept C185592680 @default.
- W2005676370 hasConcept C19577693 @default.
- W2005676370 hasConcept C198134878 @default.
- W2005676370 hasConcept C51038369 @default.
- W2005676370 hasConcept C57879066 @default.
- W2005676370 hasConcept C62520636 @default.
- W2005676370 hasConcept C65165184 @default.
- W2005676370 hasConcept C94293008 @default.
- W2005676370 hasConcept C97355855 @default.
- W2005676370 hasConceptScore W2005676370C116915560 @default.
- W2005676370 hasConceptScore W2005676370C121332964 @default.
- W2005676370 hasConceptScore W2005676370C127413603 @default.
- W2005676370 hasConceptScore W2005676370C138777275 @default.
- W2005676370 hasConceptScore W2005676370C161790260 @default.
- W2005676370 hasConceptScore W2005676370C175113610 @default.
- W2005676370 hasConceptScore W2005676370C178790620 @default.