Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005687631> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2005687631 abstract "This paper investigates the Bayesian Ying-Yang (BYY) learning for speech recognition via Gaussian mixture models (GMMs) based Hidden Markov models (HMMs). A two level procedure is proposed with the hidden Markov level trained still under the maximum likelihood principle by the Baum-Welch algorithm but with the GMMs level trained under the BYY best harmony. We proposed a new batch way EM-like Ying-Yang alternation algorithm and used it as a plug-in block to the Baum-Welch algorithm. The advantage is that number of GMM components can be automatically determined during this BYY harmony learning and that the resulted model parameters become less affected than EM-ML training by the problem of overfitting and singular solution. In comparison with the standard EM-ML training and classical model selection criterions, including BIC and AIC, speech recognition experiments in a large vocabulary task on the Hub4 broadcast news database shown that the proposed algorithm provides an improved performance and also good convergence." @default.
- W2005687631 created "2016-06-24" @default.
- W2005687631 creator A5069972085 @default.
- W2005687631 creator A5075183307 @default.
- W2005687631 creator A5084685506 @default.
- W2005687631 date "2010-01-01" @default.
- W2005687631 modified "2023-10-16" @default.
- W2005687631 title "GMM-HMM acoustic model training by a two level procedure with Gaussian components determined by automatic model selection" @default.
- W2005687631 cites W1755985346 @default.
- W2005687631 cites W2003123121 @default.
- W2005687631 cites W2044139911 @default.
- W2005687631 cites W2107617395 @default.
- W2005687631 cites W2120941820 @default.
- W2005687631 cites W2167270514 @default.
- W2005687631 cites W3148637803 @default.
- W2005687631 doi "https://doi.org/10.1109/icassp.2010.5495122" @default.
- W2005687631 hasPublicationYear "2010" @default.
- W2005687631 type Work @default.
- W2005687631 sameAs 2005687631 @default.
- W2005687631 citedByCount "17" @default.
- W2005687631 countsByYear W20056876312012 @default.
- W2005687631 countsByYear W20056876312013 @default.
- W2005687631 countsByYear W20056876312015 @default.
- W2005687631 countsByYear W20056876312016 @default.
- W2005687631 countsByYear W20056876312017 @default.
- W2005687631 countsByYear W20056876312018 @default.
- W2005687631 countsByYear W20056876312020 @default.
- W2005687631 countsByYear W20056876312022 @default.
- W2005687631 countsByYear W20056876312023 @default.
- W2005687631 crossrefType "proceedings-article" @default.
- W2005687631 hasAuthorship W2005687631A5069972085 @default.
- W2005687631 hasAuthorship W2005687631A5075183307 @default.
- W2005687631 hasAuthorship W2005687631A5084685506 @default.
- W2005687631 hasBestOaLocation W20056876312 @default.
- W2005687631 hasConcept C105795698 @default.
- W2005687631 hasConcept C107673813 @default.
- W2005687631 hasConcept C153180895 @default.
- W2005687631 hasConcept C154945302 @default.
- W2005687631 hasConcept C182081679 @default.
- W2005687631 hasConcept C22019652 @default.
- W2005687631 hasConcept C23224414 @default.
- W2005687631 hasConcept C2779736610 @default.
- W2005687631 hasConcept C28490314 @default.
- W2005687631 hasConcept C33923547 @default.
- W2005687631 hasConcept C41008148 @default.
- W2005687631 hasConcept C49781872 @default.
- W2005687631 hasConcept C50644808 @default.
- W2005687631 hasConcept C61224824 @default.
- W2005687631 hasConceptScore W2005687631C105795698 @default.
- W2005687631 hasConceptScore W2005687631C107673813 @default.
- W2005687631 hasConceptScore W2005687631C153180895 @default.
- W2005687631 hasConceptScore W2005687631C154945302 @default.
- W2005687631 hasConceptScore W2005687631C182081679 @default.
- W2005687631 hasConceptScore W2005687631C22019652 @default.
- W2005687631 hasConceptScore W2005687631C23224414 @default.
- W2005687631 hasConceptScore W2005687631C2779736610 @default.
- W2005687631 hasConceptScore W2005687631C28490314 @default.
- W2005687631 hasConceptScore W2005687631C33923547 @default.
- W2005687631 hasConceptScore W2005687631C41008148 @default.
- W2005687631 hasConceptScore W2005687631C49781872 @default.
- W2005687631 hasConceptScore W2005687631C50644808 @default.
- W2005687631 hasConceptScore W2005687631C61224824 @default.
- W2005687631 hasLocation W20056876311 @default.
- W2005687631 hasLocation W20056876312 @default.
- W2005687631 hasOpenAccess W2005687631 @default.
- W2005687631 hasPrimaryLocation W20056876311 @default.
- W2005687631 hasRelatedWork W1541505381 @default.
- W2005687631 hasRelatedWork W1658960529 @default.
- W2005687631 hasRelatedWork W2005687631 @default.
- W2005687631 hasRelatedWork W2152494161 @default.
- W2005687631 hasRelatedWork W2155089829 @default.
- W2005687631 hasRelatedWork W2261707252 @default.
- W2005687631 hasRelatedWork W2545766074 @default.
- W2005687631 hasRelatedWork W2742991909 @default.
- W2005687631 hasRelatedWork W2767651786 @default.
- W2005687631 hasRelatedWork W3006320497 @default.
- W2005687631 isParatext "false" @default.
- W2005687631 isRetracted "false" @default.
- W2005687631 magId "2005687631" @default.
- W2005687631 workType "article" @default.