Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005709610> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2005709610 endingPage "811" @default.
- W2005709610 startingPage "806" @default.
- W2005709610 abstract "No AccessTechnical NoteHeat Transfer Through Longitudinal FinsM. TurkyilmazogluM. TurkyilmazogluUniversity of Hacettepe, 06532 Beytepe, Ankara, Turkey*Mathematics Department.Search for more papers by this authorPublished Online:1 Oct 2014https://doi.org/10.2514/1.T4348SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Sunden B. and Heggs P. J., Recent Advances in Analysis of Heat Transfer for Fin Type Surfaces, WIT Press, Southampton, U.K., 2000, p. 312. Google Scholar[2] Kraus D. A., Aziz A. and Welty J., Extended Surface Heat Transfer, John Wiley and Sons, New York, 2001, p. 1120. Google Scholar[3] Lienard J. H., A Heat Transfer Textbook, Phlogiston Press, Cambridge, MA, 2011, p. 755. Google Scholar[4] Taufiq B. N., Masjuki H. H., Mahlia T. M. I., Saidur R., Faizul M. S. and Mohamad E. N., “Second Law Analysis for Optimal Thermal Design of Radial Fin Geometry by Convection,” Applied Thermal Engineering, Vol. 27, Nos. 8–9, 2007, pp. 1363–1370. doi:https://doi.org/10.1016/j.applthermaleng.2006.10.024 ATENFT 1359-4311 CrossrefGoogle Scholar[5] Moitsheki R. J., Hayat T. and Malik M. Y., “Some Exact Solutions of the Fin Problem with a Power Law Temperature-Dependent Thermal Conductivity,” Nonlinear Analysis: Real World Applications, Vol. 11, No. 5, 2010, pp. 3287–3294. doi:https://doi.org/10.1016/j.nonrwa.2009.11.021 CrossrefGoogle Scholar[6] Moitsheki R. J., “Steady One-Dimensional Heat Flow in a Longitudinal Triangular and Parabolic Fin,” Communications in Nonlinear Science and Numerical Simulation, Vol. 16, No. 10, 2011, pp. 3971–3980. doi:https://doi.org/10.1016/j.cnsns.2011.01.010 CrossrefGoogle Scholar[7] Moitsheki R. J., Rashidi M. M., Basiriparsa A. and Mortezaei A., “Analytical Solution and Numerical Simulation for One-Dimensional Steady Nonlinear Heat Conduction in a Longitudinal Radial Fin with Various Profiles,” Heat Transfer-Asian Research, 2013. doi:https://doi.org/10.1002/htj.21104 Google Scholar[8] Khan Y. and Smarda Z., “Heat Transfer Analysis on the Hiemenz Flow of a Non-Newtonian Fluid: A Homotopy Method Solution,” Abstract and Applied Analysis, Vol. 2013, 2013, pp. 1–5. doi:https://doi.org/10.1155/2013/342690 CrossrefGoogle Scholar[9] Orzechowski T., “Determining Local Values of the Heat Transfer Coefficient on a Fin Surface,” Experimental Thermal and Fluid Science, Vol. 31, No. 8, 2007, pp. 947–955. doi:https://doi.org/10.1016/j.expthermflusci.2006.10.005 ETFSEO 0894-1777 CrossrefGoogle Scholar[10] Castell A., Sole C., Medrano M., Roca J., Cabeza L. F. and Garcia D., “Natural Convection Heat Transfer Coefficients in Phase Change Material (Pcm) Modules with External Vertical Fins,” Applied Thermal Engineering, Vol. 28, No. 13, 2008, pp. 1676–1686. doi:https://doi.org/10.1016/j.applthermaleng.2007.11.004 ATENFT 1359-4311 CrossrefGoogle Scholar[11] Khani F., Ahmadzadeh R. M. and Hamedi N. M., “Analytic Solutions and Efficiency of the Nonlinear Fin Problem with Temperature-Dependent Thermal Conductivity and Heat Transfer Coefficient,” Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 8, Aug. 2009, pp. 3327–3338. doi:https://doi.org/10.1016/j.cnsns.2009.01.012 CrossrefGoogle Scholar[12] Rashidi M. M. and Erfani E., “New Analytical Method for Solving Burgers’ and Nonlinear Heat Transfer Equations and Comparison with Ham,” Computer Physics Communications, Vol. 180, No. 9, 2009, pp. 1539–1544. doi:https://doi.org/10.1016/j.cpc.2009.04.009 CPHCBZ 0010-4655 CrossrefGoogle Scholar[13] Basiriparsa A., Rashidi M. M., Shamekhi L. and Norouzian M., “Application of Homotopy Analysis Method to Determine the Fin Efficiency with Variable Cross-Section with Temperature-Dependent Thermal Conductivity,” International Conference on Thermal Energy and Environment, Kalasalingam University, Krishnankoil, India, 2011, pp. 1–8. Google Scholar[14] Khan Y., Wua Q., Faraz N. and Yildirim A., “The Effects of Variable Viscosity and Thermal Conductivity on a Thin Film Flow Over a Shrinking/Stretching Sheet,” Computers and Mathematics with Applications, Vol. 61, No. 11, 2011, pp. 3391–3399. doi:https://doi.org/10.1016/j.camwa.2011.04.053 CMAPDK 0898-1221 CrossrefGoogle Scholar[15] Turkyilmazoglu M., “Exact Solutions to Heat Transfer in Straight Fins of Varying Exponential Shape Having Temperature Dependent Properties,” International Journal of Thermal Sciences, Vol. 55, May 2012, pp. 69–75. doi:https://doi.org/10.1016/j.ijthermalsci.2011.12.019 IJTSFZ 1290-0729 CrossrefGoogle Scholar[16] Abramowitz M. and Stegun I. A., Handbook of Mathematical Functions, Dover Publ., Paris, France, 1955, p. 1046. Google Scholar Previous article Next article" @default.
- W2005709610 created "2016-06-24" @default.
- W2005709610 creator A5074305055 @default.
- W2005709610 date "2014-10-01" @default.
- W2005709610 modified "2023-09-26" @default.
- W2005709610 title "Heat Transfer Through Longitudinal Fins" @default.
- W2005709610 cites W1968073123 @default.
- W2005709610 cites W1996870689 @default.
- W2005709610 cites W2032213393 @default.
- W2005709610 cites W2044973331 @default.
- W2005709610 cites W2047675676 @default.
- W2005709610 cites W2056548974 @default.
- W2005709610 cites W2092812979 @default.
- W2005709610 cites W2125108764 @default.
- W2005709610 cites W2130891320 @default.
- W2005709610 cites W2325925851 @default.
- W2005709610 doi "https://doi.org/10.2514/1.t4348" @default.
- W2005709610 hasPublicationYear "2014" @default.
- W2005709610 type Work @default.
- W2005709610 sameAs 2005709610 @default.
- W2005709610 citedByCount "4" @default.
- W2005709610 countsByYear W20057096102016 @default.
- W2005709610 countsByYear W20057096102021 @default.
- W2005709610 crossrefType "journal-article" @default.
- W2005709610 hasAuthorship W2005709610A5074305055 @default.
- W2005709610 hasConcept C121332964 @default.
- W2005709610 hasConcept C159985019 @default.
- W2005709610 hasConcept C192562407 @default.
- W2005709610 hasConcept C50517652 @default.
- W2005709610 hasConcept C91721477 @default.
- W2005709610 hasConcept C97346530 @default.
- W2005709610 hasConcept C97355855 @default.
- W2005709610 hasConceptScore W2005709610C121332964 @default.
- W2005709610 hasConceptScore W2005709610C159985019 @default.
- W2005709610 hasConceptScore W2005709610C192562407 @default.
- W2005709610 hasConceptScore W2005709610C50517652 @default.
- W2005709610 hasConceptScore W2005709610C91721477 @default.
- W2005709610 hasConceptScore W2005709610C97346530 @default.
- W2005709610 hasConceptScore W2005709610C97355855 @default.
- W2005709610 hasIssue "4" @default.
- W2005709610 hasLocation W20057096101 @default.
- W2005709610 hasOpenAccess W2005709610 @default.
- W2005709610 hasPrimaryLocation W20057096101 @default.
- W2005709610 hasRelatedWork W1992389113 @default.
- W2005709610 hasRelatedWork W1994393204 @default.
- W2005709610 hasRelatedWork W2056160561 @default.
- W2005709610 hasRelatedWork W2081470998 @default.
- W2005709610 hasRelatedWork W2103711960 @default.
- W2005709610 hasRelatedWork W2389181835 @default.
- W2005709610 hasRelatedWork W2898444027 @default.
- W2005709610 hasRelatedWork W2945953125 @default.
- W2005709610 hasRelatedWork W3151160453 @default.
- W2005709610 hasRelatedWork W4307446776 @default.
- W2005709610 hasVolume "28" @default.
- W2005709610 isParatext "false" @default.
- W2005709610 isRetracted "false" @default.
- W2005709610 magId "2005709610" @default.
- W2005709610 workType "article" @default.