Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005752816> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2005752816 endingPage "10" @default.
- W2005752816 startingPage "10" @default.
- W2005752816 abstract "We wish to clarify the first part of Michael Turner’s Reference Frame (Physics Today, December 2008, page 8), which dealt with the early history of nucleosynthesis. Turner states that “[George] Gamow’s Big Bang model spurred Fred Hoyle to think more creatively about the stellar nucleosynthesis to keep his steady-state model competitive and in 1957, with Geoffrey Burbidge, Margaret Burbidge, and William Fowler, he worked out the correct theory of how the bulk of the elements were made in stars.” That timing is wrong: Nucleosyn thesis (1946) came before cosmology (1948). The correct story adds weight to Turner’s theme of the positive influence of a wrong paper.The Alpher, Bethe, and Gamow (αβγ) paper was wrong about nucleosynthesis but embedded it in what we believe to be the correct cosmological framework. A second wrong idea, the steady-state cosmology, was enormously influential because it gave definite predictions for observers to aim for and so was a key step along the way to developing precision cosmology. The steady-state theory was motivated by the success of the theory of stellar nucleosynthesis, which preceded it. Stellar nucleosynthesis was mostly worked out by Hoyle in two papers 1 1. F. Hoyle, Mon. Not. R. Astron. Soc. 106, 343 (1946); F. Hoyle, Astrophys. J. Suppl. 1, 121 (1954). https://doi.org/10.1086/190005 in which he identified the processes that synthesized the elements from carbon to nickel and identified supernovae as the sites. The rarer elements beyond nickel (actually beyond zinc, the heaviest species produced in the quasi-equilibrium of the iron peak) were produced in neutron-capture processes both rapid and slow. The synthesis of many of the rare heavy elements was first understood by Alastair Cameron, who explained the presence of the unstable element technetium in evolved stars. His papers on the s-process 2 2. See, for example, A. G.W. Cameron, Astrophys. J. 121, 144 (1955). https://doi.org/10.1086/145970 came out before the 1957 reviews by Hoyle and company and by Cameron. 3 3. See E. M. Burbidge, G. R. Burbidge, W. A. Fowler, F. Hoyle, Rev. Mod. Phys. 29, 547 (1957); https://doi.org/10.1103/RevModPhys.29.547 A. G. W. Cameron, Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis, (CRL-41) Atomic Energy of Canada Ltd (1957). Although some isotopes of the light elements lithium, beryllium, and boron might be made in stars (or cosmic-ray spallation), the origins of helium-4 are not so straightforward. Stars do produce 4He, but observational estimates of the yield are less than about 0.08 by mass, much less than the cosmological yield of 0.24, requiring a more prolific source for 4He production, such as the Big Bang. Cosmological nucleosynthesis was coming into disfavor in the late 1940s. Enrico Fermi and Anthony Turkevich realized that only hydrogen-1, hydrogen-2, 3He, and 4He could be made in significant amounts. (See reference 44. See figure 20 in R. A. Alpher, R. C. Herman, Rev. Mod. Phys. 22, 153 (1950). https://doi.org/10.1103/RevModPhys.22.153 ; we now know 3He is rapidly destroyed also, but 7Li may be produced.) Unlike the stellar case, there were no “seed” heavy nuclei to capture neutrons, which made the cosmological neutron capture theory irrelevant. It was natural that the success of stellar nucleosynthesis started Hoyle questioning the necessity for a Big Bang cosmology, which was failing as a general theory of nucleosynthesis. The steady-state theory was formulated in 1948. 5 5. H. Bondi, T. Gold, Mon. Not. R. Astron. Soc. 108, 252 (1948) F. Hoyle, Mon. Not. R. Astron. Soc. 108, 372 (1948); F. Hoyle, Mon. Not. R. Astron. Soc. 109, 365 (1949). Probably one of its attractions is the generalization to time of the Copernican notion that we are not in a special place in space. One thing the theory did was to make the spectacular prediction that on average the universe did not change, a testable idea.With the deep-field images from the Hubble Space Telescope , 6 6. See http://hubblesite.org/newscenter/archive/releases/cosmology/2006/44. astronomers can see back to a redshift corresponding to 7% of the age of the universe in the Big Bang cosmology. That the fainter and more distant images look different from the nearer ones is a striking indication that we live in an evolutionary cosmology. Even incorrect theories may be helpful, if they are well posed and can be falsified. Both αβγ and the steady state were important steps along the way to precision cosmology. REFERENCESSection:ChooseTop of pageREFERENCES <<1. F. Hoyle, Mon. Not. R. Astron. Soc. 106, 343 (1946); Google ScholarCrossref, ISI F. Hoyle, Astrophys. J. Suppl. 1, 121 (1954). https://doi.org/10.1086/190005 , , Google ScholarCrossref2. See, for example, A. G.W. Cameron, Astrophys. J. 121, 144 (1955). https://doi.org/10.1086/145970 , Google ScholarCrossref, ISI3. See E. M. Burbidge, G. R. Burbidge, W. A. Fowler, F. Hoyle, Rev. Mod. Phys. 29, 547 (1957); https://doi.org/10.1103/RevModPhys.29.547 , Google ScholarCrossref, ISI A. G. W. Cameron, Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis, (CRL-41) Atomic Energy of Canada Ltd (1957). , Google Scholar4. See figure 20 in R. A. Alpher, R. C. Herman, Rev. Mod. Phys. 22, 153 (1950). https://doi.org/10.1103/RevModPhys.22.153 , Google ScholarCrossref, ISI5. H. Bondi, T. Gold, Mon. Not. R. Astron. Soc. 108, 252 (1948) Google ScholarCrossref, ISI F. Hoyle, Mon. Not. R. Astron. Soc. 108, 372 (1948); , Google ScholarCrossref, ISI F. Hoyle, Mon. Not. R. Astron. Soc. 109, 365 (1949). , Google ScholarCrossref, ISI6. See http://hubblesite.org/newscenter/archive/releases/cosmology/2006/44. Google Scholar© 2009 American Institute of Physics." @default.
- W2005752816 created "2016-06-24" @default.
- W2005752816 creator A5012575074 @default.
- W2005752816 creator A5087824415 @default.
- W2005752816 date "2009-05-01" @default.
- W2005752816 modified "2023-09-23" @default.
- W2005752816 title "αβγ, Hoyle, and the history of nucleosynthesis" @default.
- W2005752816 cites W1980246671 @default.
- W2005752816 cites W1987901103 @default.
- W2005752816 cites W1994730782 @default.
- W2005752816 cites W2020602176 @default.
- W2005752816 cites W2044516467 @default.
- W2005752816 cites W2076480526 @default.
- W2005752816 cites W2089630383 @default.
- W2005752816 cites W2163953382 @default.
- W2005752816 doi "https://doi.org/10.1063/1.3141922" @default.
- W2005752816 hasPublicationYear "2009" @default.
- W2005752816 type Work @default.
- W2005752816 sameAs 2005752816 @default.
- W2005752816 citedByCount "0" @default.
- W2005752816 crossrefType "journal-article" @default.
- W2005752816 hasAuthorship W2005752816A5012575074 @default.
- W2005752816 hasAuthorship W2005752816A5087824415 @default.
- W2005752816 hasBestOaLocation W20057528161 @default.
- W2005752816 hasConcept C112473583 @default.
- W2005752816 hasConcept C121332964 @default.
- W2005752816 hasConcept C127592171 @default.
- W2005752816 hasConcept C1276947 @default.
- W2005752816 hasConcept C16743098 @default.
- W2005752816 hasConcept C26405456 @default.
- W2005752816 hasConcept C4397270 @default.
- W2005752816 hasConcept C44870925 @default.
- W2005752816 hasConceptScore W2005752816C112473583 @default.
- W2005752816 hasConceptScore W2005752816C121332964 @default.
- W2005752816 hasConceptScore W2005752816C127592171 @default.
- W2005752816 hasConceptScore W2005752816C1276947 @default.
- W2005752816 hasConceptScore W2005752816C16743098 @default.
- W2005752816 hasConceptScore W2005752816C26405456 @default.
- W2005752816 hasConceptScore W2005752816C4397270 @default.
- W2005752816 hasConceptScore W2005752816C44870925 @default.
- W2005752816 hasIssue "5" @default.
- W2005752816 hasLocation W20057528161 @default.
- W2005752816 hasOpenAccess W2005752816 @default.
- W2005752816 hasPrimaryLocation W20057528161 @default.
- W2005752816 hasRelatedWork W1979429998 @default.
- W2005752816 hasRelatedWork W1995727689 @default.
- W2005752816 hasRelatedWork W2059287963 @default.
- W2005752816 hasRelatedWork W2063437141 @default.
- W2005752816 hasRelatedWork W2077388962 @default.
- W2005752816 hasRelatedWork W2155079326 @default.
- W2005752816 hasRelatedWork W2753110441 @default.
- W2005752816 hasRelatedWork W2891239165 @default.
- W2005752816 hasRelatedWork W3100129160 @default.
- W2005752816 hasRelatedWork W3118143318 @default.
- W2005752816 hasVolume "62" @default.
- W2005752816 isParatext "false" @default.
- W2005752816 isRetracted "false" @default.
- W2005752816 magId "2005752816" @default.
- W2005752816 workType "article" @default.