Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005754148> ?p ?o ?g. }
- W2005754148 endingPage "393" @default.
- W2005754148 startingPage "373" @default.
- W2005754148 abstract "The urban landscape is dynamic and complex. As improved remote sensing data in terms of spatial and spectral characteristics became available, more sophisticated methods have been adopted for urban applications. This study proposed and evaluated a classification model incorporating feature selection, artificial immune networks and parameter optimization. Information gain, a broadly applied feature selection metric used in data mining techniques such as decision trees, was used for feature selection. Two types of information gain – binary-class entropy and multiple-class entropy – were investigated. Artificial immune networks have been recently applied to remote sensing classification and have been proven useful especially when multiple parameters of the networks are optimized through a genetic algorithm. The proposed model was tested for urban classification using hyperspectral (i.e. AISA and Hyperion) and LiDAR data over two urban study sites. Results show that the model considerably reduced processing time (∼70%) for classification without significant accuracy decrease." @default.
- W2005754148 created "2016-06-24" @default.
- W2005754148 creator A5051773059 @default.
- W2005754148 creator A5057911864 @default.
- W2005754148 creator A5067452255 @default.
- W2005754148 creator A5086947334 @default.
- W2005754148 date "2012-08-01" @default.
- W2005754148 modified "2023-10-16" @default.
- W2005754148 title "Fusion of feature selection and optimized immune networks for hyperspectral image classification of urban landscapes" @default.
- W2005754148 cites W1967412740 @default.
- W2005754148 cites W1972023946 @default.
- W2005754148 cites W1976211926 @default.
- W2005754148 cites W1977023447 @default.
- W2005754148 cites W1977338552 @default.
- W2005754148 cites W1992813404 @default.
- W2005754148 cites W1996347147 @default.
- W2005754148 cites W1997893060 @default.
- W2005754148 cites W2003179529 @default.
- W2005754148 cites W2003895583 @default.
- W2005754148 cites W2005397254 @default.
- W2005754148 cites W2006924244 @default.
- W2005754148 cites W2008997808 @default.
- W2005754148 cites W2016649354 @default.
- W2005754148 cites W2018255156 @default.
- W2005754148 cites W2021527468 @default.
- W2005754148 cites W2021597230 @default.
- W2005754148 cites W2025389829 @default.
- W2005754148 cites W2040884411 @default.
- W2005754148 cites W2050520595 @default.
- W2005754148 cites W2053727222 @default.
- W2005754148 cites W2057403462 @default.
- W2005754148 cites W2075810164 @default.
- W2005754148 cites W2083270190 @default.
- W2005754148 cites W2084291846 @default.
- W2005754148 cites W2092012759 @default.
- W2005754148 cites W2099590928 @default.
- W2005754148 cites W2104803300 @default.
- W2005754148 cites W2106950236 @default.
- W2005754148 cites W2114819256 @default.
- W2005754148 cites W2123907688 @default.
- W2005754148 cites W2131697388 @default.
- W2005754148 cites W2139263936 @default.
- W2005754148 cites W2144899385 @default.
- W2005754148 cites W2149471024 @default.
- W2005754148 cites W2152653673 @default.
- W2005754148 cites W2154874087 @default.
- W2005754148 cites W2159411209 @default.
- W2005754148 cites W2164934768 @default.
- W2005754148 cites W2169499095 @default.
- W2005754148 cites W4234852625 @default.
- W2005754148 doi "https://doi.org/10.1080/10106049.2011.642898" @default.
- W2005754148 hasPublicationYear "2012" @default.
- W2005754148 type Work @default.
- W2005754148 sameAs 2005754148 @default.
- W2005754148 citedByCount "11" @default.
- W2005754148 countsByYear W20057541482012 @default.
- W2005754148 countsByYear W20057541482014 @default.
- W2005754148 countsByYear W20057541482015 @default.
- W2005754148 countsByYear W20057541482016 @default.
- W2005754148 countsByYear W20057541482018 @default.
- W2005754148 countsByYear W20057541482020 @default.
- W2005754148 countsByYear W20057541482022 @default.
- W2005754148 crossrefType "journal-article" @default.
- W2005754148 hasAuthorship W2005754148A5051773059 @default.
- W2005754148 hasAuthorship W2005754148A5057911864 @default.
- W2005754148 hasAuthorship W2005754148A5067452255 @default.
- W2005754148 hasAuthorship W2005754148A5086947334 @default.
- W2005754148 hasConcept C106301342 @default.
- W2005754148 hasConcept C121332964 @default.
- W2005754148 hasConcept C12267149 @default.
- W2005754148 hasConcept C124101348 @default.
- W2005754148 hasConcept C127413603 @default.
- W2005754148 hasConcept C138885662 @default.
- W2005754148 hasConcept C148483581 @default.
- W2005754148 hasConcept C153180895 @default.
- W2005754148 hasConcept C154945302 @default.
- W2005754148 hasConcept C159078339 @default.
- W2005754148 hasConcept C176217482 @default.
- W2005754148 hasConcept C205649164 @default.
- W2005754148 hasConcept C21547014 @default.
- W2005754148 hasConcept C2776401178 @default.
- W2005754148 hasConcept C41008148 @default.
- W2005754148 hasConcept C41895202 @default.
- W2005754148 hasConcept C62520636 @default.
- W2005754148 hasConcept C62649853 @default.
- W2005754148 hasConcept C81917197 @default.
- W2005754148 hasConcept C93768804 @default.
- W2005754148 hasConceptScore W2005754148C106301342 @default.
- W2005754148 hasConceptScore W2005754148C121332964 @default.
- W2005754148 hasConceptScore W2005754148C12267149 @default.
- W2005754148 hasConceptScore W2005754148C124101348 @default.
- W2005754148 hasConceptScore W2005754148C127413603 @default.
- W2005754148 hasConceptScore W2005754148C138885662 @default.
- W2005754148 hasConceptScore W2005754148C148483581 @default.
- W2005754148 hasConceptScore W2005754148C153180895 @default.
- W2005754148 hasConceptScore W2005754148C154945302 @default.
- W2005754148 hasConceptScore W2005754148C159078339 @default.
- W2005754148 hasConceptScore W2005754148C176217482 @default.