Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005759562> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2005759562 endingPage "500" @default.
- W2005759562 startingPage "489" @default.
- W2005759562 abstract "We consider the dynamics of polynomial semigroups with bounded postcritical set and random dynamics of complex polynomials in the complex plane. A polynomial semigroup G is a semigroup generated by polynomials in one variable with the semigroup operation being functional composition. We show that if the postcritical set of G, that is the closure of the G-orbit of the union of any critical values of any generators of G, is bounded in the complex plane, then the space of components of the Julia set of G (Julia set is the set of points in the Riemann sphere C¯ in which G is not normal) has a total order “⩽”, where for two compact connected sets K1, K2 in C¯, K1 ⩽ K2 indicates that K1 = K2, or K1 is included in a bounded component of C¯⧹K2. Using the above result and combining it with the theory of random dynamics of complex polynomials, we consider the following: Let τ be a Borel probability measure in the space {g∈C[z]|deg(g)⩾2} with topology induced by the uniform convergence on the Riemann sphere C¯. We consider the i.i.d. random dynamics in C¯ such that at every step we choose a polynomial according to the distribution τ. Let T∞(z) be the probability of tending to ∞∈C¯ starting from the initial value z∈C¯ and let Gτ be the polynomial semigroup generated by the support of τ. Suppose that the support of τ is compact, the postcritical set of Gτ is bounded in the complex plane and the Julia set of Gτ is disconnected. Then, we show that (1) in each component U of the complement of the Julia set of Gτ, T∞∣U equals a constant CU, (2) T∞:C¯→[0,1] is a continuous function on the whole C¯, and (3) if J1, J2 are two components of the Julia set of Gτ with J1 ⩽ J2, then maxz∈J1T∞(z)⩽minz∈J2T∞(z). Hence T∞ is similar to the devil’s-staircase function." @default.
- W2005759562 created "2016-06-24" @default.
- W2005759562 creator A5087163683 @default.
- W2005759562 date "2007-04-01" @default.
- W2005759562 modified "2023-09-27" @default.
- W2005759562 title "Random dynamics of polynomials and devil’s-staircase-like functions in the complex plane" @default.
- W2005759562 cites W1488683707 @default.
- W2005759562 cites W1525441960 @default.
- W2005759562 cites W1646822462 @default.
- W2005759562 cites W1922251757 @default.
- W2005759562 cites W1987154347 @default.
- W2005759562 cites W1991503031 @default.
- W2005759562 cites W1993162986 @default.
- W2005759562 cites W1995180743 @default.
- W2005759562 cites W2013386156 @default.
- W2005759562 cites W2029044804 @default.
- W2005759562 cites W2034152676 @default.
- W2005759562 cites W2057141534 @default.
- W2005759562 cites W2083249474 @default.
- W2005759562 cites W2089877738 @default.
- W2005759562 cites W2162249436 @default.
- W2005759562 doi "https://doi.org/10.1016/j.amc.2006.08.149" @default.
- W2005759562 hasPublicationYear "2007" @default.
- W2005759562 type Work @default.
- W2005759562 sameAs 2005759562 @default.
- W2005759562 citedByCount "25" @default.
- W2005759562 countsByYear W20057595622012 @default.
- W2005759562 countsByYear W20057595622013 @default.
- W2005759562 countsByYear W20057595622015 @default.
- W2005759562 countsByYear W20057595622019 @default.
- W2005759562 countsByYear W20057595622020 @default.
- W2005759562 crossrefType "journal-article" @default.
- W2005759562 hasAuthorship W2005759562A5087163683 @default.
- W2005759562 hasConcept C114614502 @default.
- W2005759562 hasConcept C118615104 @default.
- W2005759562 hasConcept C134306372 @default.
- W2005759562 hasConcept C154483964 @default.
- W2005759562 hasConcept C179117685 @default.
- W2005759562 hasConcept C18556879 @default.
- W2005759562 hasConcept C187619975 @default.
- W2005759562 hasConcept C202444582 @default.
- W2005759562 hasConcept C207405024 @default.
- W2005759562 hasConcept C33923547 @default.
- W2005759562 hasConcept C34388435 @default.
- W2005759562 hasConcept C6077466 @default.
- W2005759562 hasConcept C90119067 @default.
- W2005759562 hasConceptScore W2005759562C114614502 @default.
- W2005759562 hasConceptScore W2005759562C118615104 @default.
- W2005759562 hasConceptScore W2005759562C134306372 @default.
- W2005759562 hasConceptScore W2005759562C154483964 @default.
- W2005759562 hasConceptScore W2005759562C179117685 @default.
- W2005759562 hasConceptScore W2005759562C18556879 @default.
- W2005759562 hasConceptScore W2005759562C187619975 @default.
- W2005759562 hasConceptScore W2005759562C202444582 @default.
- W2005759562 hasConceptScore W2005759562C207405024 @default.
- W2005759562 hasConceptScore W2005759562C33923547 @default.
- W2005759562 hasConceptScore W2005759562C34388435 @default.
- W2005759562 hasConceptScore W2005759562C6077466 @default.
- W2005759562 hasConceptScore W2005759562C90119067 @default.
- W2005759562 hasIssue "1" @default.
- W2005759562 hasLocation W20057595621 @default.
- W2005759562 hasOpenAccess W2005759562 @default.
- W2005759562 hasPrimaryLocation W20057595621 @default.
- W2005759562 hasRelatedWork W2005759562 @default.
- W2005759562 hasRelatedWork W2074971705 @default.
- W2005759562 hasRelatedWork W2111626079 @default.
- W2005759562 hasRelatedWork W2135757168 @default.
- W2005759562 hasRelatedWork W2347472764 @default.
- W2005759562 hasRelatedWork W2806874031 @default.
- W2005759562 hasRelatedWork W2949780018 @default.
- W2005759562 hasRelatedWork W2952510272 @default.
- W2005759562 hasRelatedWork W3002145678 @default.
- W2005759562 hasRelatedWork W34719802 @default.
- W2005759562 hasVolume "187" @default.
- W2005759562 isParatext "false" @default.
- W2005759562 isRetracted "false" @default.
- W2005759562 magId "2005759562" @default.
- W2005759562 workType "article" @default.