Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005885353> ?p ?o ?g. }
- W2005885353 endingPage "1889" @default.
- W2005885353 startingPage "1882" @default.
- W2005885353 abstract "No AccessJournal of UrologyInvestigative Urology1 May 2012Two-Layer Tissue Engineered Urethra Using Oral Epithelial and Muscle Derived Cells Hiroshi Mikami, Go Kuwahara, Nobuyuki Nakamura, Masayuki Yamato, Masatoshi Tanaka, and Shohta Kodama Hiroshi MikamiHiroshi Mikami Department of Urology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan More articles by this author , Go KuwaharaGo Kuwahara Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan More articles by this author , Nobuyuki NakamuraNobuyuki Nakamura Department of Urology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan More articles by this author , Masayuki YamatoMasayuki Yamato Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan More articles by this author , Masatoshi TanakaMasatoshi Tanaka Department of Urology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan More articles by this author , and Shohta KodamaShohta Kodama Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan More articles by this author View All Author Informationhttps://doi.org/10.1016/j.juro.2011.12.059AboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract Purpose: We fabricated novel tissue engineered urethral grafts using autologously harvested oral cells. We report their viability in a canine model. Materials and Methods: Oral tissues were harvested by punch biopsy and divided into mucosal and muscle sections. Epithelial cells from mucosal sections were cultured as epithelial cell sheets. Simultaneously muscle derived cells were seeded on collagen mesh matrices to form muscle cell sheets. At 2 weeks the sheets were joined and tubularized to form 2-layer tissue engineered urethras, which were autologously grafted to surgically induced urethral defects in 10 dogs in the experimental group. Tissue engineered grafts were not applied to the induced urethral defect in control dogs. The dogs were followed 12 weeks postoperatively. Urethrogram and histological examination were done to evaluate the grafting outcome. Results: We successfully fabricated 2-layer tissue engineered urethras in vitro and transplanted them in dogs in the experimental group. The 12-week complication-free rate was significantly higher in the experimental group than in controls. Urethrogram confirmed urethral patency without stricture in the complication-free group at 12 weeks. Histologically urethras in the transplant group showed a stratified epithelial layer overlying well differentiated submucosa. In contrast, urethras in controls showed severe fibrosis without epithelial layer formation. Conclusions: Two-layer tissue engineered urethras were engineered using cells harvested by minimally invasive oral punch biopsy. Results suggest that this technique can encourage regeneration of a functional urethra. References 1 : Buccal mucosal grafts for urethral reconstruction. Urology1998; 51: 15. Google Scholar 2 : Substitution urethroplasty with buccal mucosal-free grafts. J Urol2001; 165: 1131. Link, Google Scholar 3 : Buccal mucosal urethroplasty: is it the new gold standard?. BJU Int2004; 93: 1191. Google Scholar 4 : Comparison of donor site intraoral morbidity after mucosal graft harvesting for urethral reconstruction. Urology2005; 66: 716. Google Scholar 5 : Oral complications after buccal mucosal graft harvest for urethroplasty. BJU Int2004; 94: 867. Google Scholar 6 : Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet2011; 377: 1175. Google Scholar 7 : Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng2001; 7: 473. Google Scholar 8 : Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med2004; 351: 1187. Google Scholar 9 : Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut2006; 55: 1704. Google Scholar 10 : Cell sheet engineering for myocardial tissue reconstruction. Biomaterials2003; 24: 2309. Google Scholar 11 : Isolation and characterization of human muscle-derived cells. Urology2009; 74: 440. Google Scholar 12 : Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol2002; 157: 851. Google Scholar 13 : Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene-therapy. J Cell Biol1994; 125: 1275. Google Scholar 14 : Muscle-derived stem cells seeded into acellular scaffolds develop calcium-dependent contractile activity that is modulated by nicotinic receptors. Urology2003; 61: 1285. Google Scholar 15 : Ocular surface reconstruction using autologous rabbit oral mucosal epithelial sheets fabricated ex vivo on a temperature-responsive culture surface. Invest Ophthalmol Visual Sci2005; 46: 1632. Google Scholar 16 : Urothelium regeneration using viable cultured urothelial cell sheets grafted on demucosalized gastric flaps. BJU Int2004; 93: 1069. Google Scholar 17 : Fabrication of human oral mucosal epithelial cell sheets for treatment of esophageal ulceration by endoscopic submucosal dissection. Gastrointest Endosc2010; 72: 1253. Google Scholar 18 : Tissue-engineered buccal mucosa urethroplasty—clinical outcomes. Eur Urol2008; 53: 1263. Google Scholar 19 : Urethral replacement using cell seeded tubularized collagen matrices. J Urol2002; 168: 1789. Link, Google Scholar 20 : Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix. BJU Int2007; 99: 1162. Google Scholar 21 : Urethral reconstruction using oral keratinocyte seeded bladder acellular matrix grafts. J Urol2008; 180: 1538. Link, Google Scholar 22 : Randomized comparative study between buccal mucosal and acellular bladder matrix grafts in complex anterior urethral strictures. J Urol2008; 179: 1432. Link, Google Scholar 23 : A collagen matrix derived from bladder can be used to engineer smooth muscle tissue. World J Urol2008; 26: 307. Google Scholar 24 : Urethral reconstruction of critical defects in rabbits using molecularly defined tubular type I collagen biomatrices: key issues in growth factor addition. Tissue Eng Part A2010; 16: 3319. Google Scholar 25 : Periurethral cellular injection: comparison of muscle-derived progenitor cells and fibroblasts with regard to efficacy and tissue contractility in an animal model of stress urinary incontinence. Urology2006; 68: 449. Google Scholar 26 : Myoblast and fibroblast therapy for post-prostatectomy urinary incontinence: 1-year followup of 63 patients. J Urol2008; 179: 226. Link, Google Scholar 27 : Muscle-derived cell transplantation and differentiation into lower urinary tract smooth muscle. Urology2001; 57: 826. Google Scholar 28 : Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor. Circulation2008; 118: S52. Google Scholar 29 : Engineering functional islets from cultured cells. Tissue Eng Part A2009; 15: 3321. Google Scholar 30 : Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol2010; 12: 143. Google Scholar © 2012 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetails Volume 187Issue 5May 2012Page: 1882-1889 Advertisement Copyright & Permissions© 2012 by American Urological Association Education and Research, Inc.Keywordstissue engineeringdogsurethratransplantsepithelial cellsAcknowledgmentsAtree, Tokyo, Japan, provided collagen mesh matrices.MetricsAuthor Information Hiroshi Mikami Department of Urology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan More articles by this author Go Kuwahara Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan More articles by this author Nobuyuki Nakamura Department of Urology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan More articles by this author Masayuki Yamato Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan More articles by this author Masatoshi Tanaka Department of Urology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan More articles by this author Shohta Kodama Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan More articles by this author Expand All Advertisement PDF downloadLoading ..." @default.
- W2005885353 created "2016-06-24" @default.
- W2005885353 creator A5010327980 @default.
- W2005885353 creator A5021209820 @default.
- W2005885353 creator A5030406839 @default.
- W2005885353 creator A5039425264 @default.
- W2005885353 creator A5058100299 @default.
- W2005885353 creator A5063978809 @default.
- W2005885353 date "2012-05-01" @default.
- W2005885353 modified "2023-09-27" @default.
- W2005885353 title "Two-Layer Tissue Engineered Urethra Using Oral Epithelial and Muscle Derived Cells" @default.
- W2005885353 cites W1493603806 @default.
- W2005885353 cites W1968760803 @default.
- W2005885353 cites W1971765488 @default.
- W2005885353 cites W1972492579 @default.
- W2005885353 cites W1980769789 @default.
- W2005885353 cites W2004862604 @default.
- W2005885353 cites W2006191311 @default.
- W2005885353 cites W2010253303 @default.
- W2005885353 cites W2019057798 @default.
- W2005885353 cites W2026545999 @default.
- W2005885353 cites W2035963411 @default.
- W2005885353 cites W2044608445 @default.
- W2005885353 cites W2055331347 @default.
- W2005885353 cites W2062124706 @default.
- W2005885353 cites W2062867597 @default.
- W2005885353 cites W2071472139 @default.
- W2005885353 cites W2072641766 @default.
- W2005885353 cites W2079308424 @default.
- W2005885353 cites W2091436580 @default.
- W2005885353 cites W2091573294 @default.
- W2005885353 cites W2099933504 @default.
- W2005885353 cites W2100514170 @default.
- W2005885353 cites W2112129023 @default.
- W2005885353 cites W2123630792 @default.
- W2005885353 cites W2127296180 @default.
- W2005885353 cites W2136007300 @default.
- W2005885353 cites W2140273460 @default.
- W2005885353 cites W2148709863 @default.
- W2005885353 cites W2155419259 @default.
- W2005885353 cites W4296992427 @default.
- W2005885353 doi "https://doi.org/10.1016/j.juro.2011.12.059" @default.
- W2005885353 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22439965" @default.
- W2005885353 hasPublicationYear "2012" @default.
- W2005885353 type Work @default.
- W2005885353 sameAs 2005885353 @default.
- W2005885353 citedByCount "30" @default.
- W2005885353 countsByYear W20058853532013 @default.
- W2005885353 countsByYear W20058853532014 @default.
- W2005885353 countsByYear W20058853532015 @default.
- W2005885353 countsByYear W20058853532016 @default.
- W2005885353 countsByYear W20058853532017 @default.
- W2005885353 countsByYear W20058853532018 @default.
- W2005885353 countsByYear W20058853532019 @default.
- W2005885353 countsByYear W20058853532020 @default.
- W2005885353 countsByYear W20058853532021 @default.
- W2005885353 countsByYear W20058853532022 @default.
- W2005885353 countsByYear W20058853532023 @default.
- W2005885353 crossrefType "journal-article" @default.
- W2005885353 hasAuthorship W2005885353A5010327980 @default.
- W2005885353 hasAuthorship W2005885353A5021209820 @default.
- W2005885353 hasAuthorship W2005885353A5030406839 @default.
- W2005885353 hasAuthorship W2005885353A5039425264 @default.
- W2005885353 hasAuthorship W2005885353A5058100299 @default.
- W2005885353 hasAuthorship W2005885353A5063978809 @default.
- W2005885353 hasConcept C105702510 @default.
- W2005885353 hasConcept C126894567 @default.
- W2005885353 hasConcept C171250308 @default.
- W2005885353 hasConcept C192562407 @default.
- W2005885353 hasConcept C2777085111 @default.
- W2005885353 hasConcept C2779227376 @default.
- W2005885353 hasConcept C3020533434 @default.
- W2005885353 hasConcept C71924100 @default.
- W2005885353 hasConcept C86803240 @default.
- W2005885353 hasConcept C95444343 @default.
- W2005885353 hasConceptScore W2005885353C105702510 @default.
- W2005885353 hasConceptScore W2005885353C126894567 @default.
- W2005885353 hasConceptScore W2005885353C171250308 @default.
- W2005885353 hasConceptScore W2005885353C192562407 @default.
- W2005885353 hasConceptScore W2005885353C2777085111 @default.
- W2005885353 hasConceptScore W2005885353C2779227376 @default.
- W2005885353 hasConceptScore W2005885353C3020533434 @default.
- W2005885353 hasConceptScore W2005885353C71924100 @default.
- W2005885353 hasConceptScore W2005885353C86803240 @default.
- W2005885353 hasConceptScore W2005885353C95444343 @default.
- W2005885353 hasIssue "5" @default.
- W2005885353 hasLocation W20058853531 @default.
- W2005885353 hasLocation W20058853532 @default.
- W2005885353 hasOpenAccess W2005885353 @default.
- W2005885353 hasPrimaryLocation W20058853531 @default.
- W2005885353 hasRelatedWork W1522528043 @default.
- W2005885353 hasRelatedWork W1985916211 @default.
- W2005885353 hasRelatedWork W1992379862 @default.
- W2005885353 hasRelatedWork W2039180553 @default.
- W2005885353 hasRelatedWork W2088436121 @default.
- W2005885353 hasRelatedWork W2126197145 @default.
- W2005885353 hasRelatedWork W2392413698 @default.
- W2005885353 hasRelatedWork W2889553160 @default.