Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005941970> ?p ?o ?g. }
- W2005941970 endingPage "144" @default.
- W2005941970 startingPage "117" @default.
- W2005941970 abstract "1. Electrophysiological techniques are described which allow intracellular recording from peripheral myelinated axons of lizards and frogs for up to several hours. The sciatic and intramuscular axons studied here have resting potentials of -60 to -80 mV and action potentials (evoked by stimulation of the proximal nerve trunk) of 50-90 mV. They show a prominent depolarizing afterpotential (d.a.p.), which is present both in isolated axons and in axons still attached to their peripheral terminals. This d.a.p. has a peak amplitude of 5-20 mV at the resting potential, and decays with a half-time of 20-100 msec. 2. The peak amplitude of the d.a.p. is voltage-sensitive, increasing to up to 26 mV with membrane hyperpolarization. The d.a.p. disappears as the axon is depolarized to -60 to -45 mV, and does not appear to reverse with further depolarization. 3. The d.a.p. is not reduced when bath Ca is replaced by 2-10 m m divalent Mn or Ni. The d.a.p. is not reversed when axons depleted of Cl (by prolonged exposure to Cl-deficient, SO4-enriched solutions) are bathed in Cl-rich solutions. These results suggest that the d.a.p. is not mediated by a conductance change specific for Ca or Cl ions. Partial substitution of tetramethylammonium for bath Na, or addition of 10−5 m-tetrodotoxin to the normal bathing solution, reduces the amplitude of both the action potential and the d.a.p. 4. The amplitude of the d.a.p. is not sensitive to bath [K] over the range 1-7·5 m m, provided that all measurements are made at the same holding potential. This result argues that the d.a.p. is not mediated by accumulation of K outside the active axon. 5. Treatments expected to inhibit the Na—K exchange pump (cooling from 25 to 10 °C, or 0·15 m m-ouabain) do not enlarge or prolong the d.a.p., although they do abolish a slower hyperpolarizing afterpotential seen following repetitive stimulation. 6. The passive voltage response of the axon to small injected pulses of depolarizing or hyperpolarizing current shows a prominent, slowly decaying component with a time course similar to that of the d.a.p. Depolarizing current reduces the input resistance of the axon, and increases the rate of decay of both the passive voltage response and the d.a.p. There is a slight conductance increase during the peak of the d.a.p., but the same conductance increase can be produced by a comparable passive depolarization. 7. We conclude that the d.a.p. is due mainly to a passive capacitative current, probably resulting from discharge of the internodal axonal membrane capacitance through a resistive current pathway beneath or through the myelin sheath. We suggest that this slow capacitative discharge becomes evident as soon as most of the nodal ionic channels activated during the action potential have closed. An electrical model of the myelinated axon that incorporates the postulated internodal leakage pathway can account both for the prolonged d.a.p. recorded inside the axon, and for the potential profile recorded extra-axonally in or near the internodal periaxonal space." @default.
- W2005941970 created "2016-06-24" @default.
- W2005941970 creator A5022190236 @default.
- W2005941970 creator A5026493798 @default.
- W2005941970 date "1982-02-01" @default.
- W2005941970 modified "2023-10-11" @default.
- W2005941970 title "Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential" @default.
- W2005941970 cites W1984058498 @default.
- W2005941970 cites W1998586679 @default.
- W2005941970 cites W2007165565 @default.
- W2005941970 cites W2013508721 @default.
- W2005941970 cites W2018377255 @default.
- W2005941970 cites W2019735689 @default.
- W2005941970 cites W2021422035 @default.
- W2005941970 cites W2021706887 @default.
- W2005941970 cites W2027690153 @default.
- W2005941970 cites W2030758026 @default.
- W2005941970 cites W2031370995 @default.
- W2005941970 cites W2032784441 @default.
- W2005941970 cites W2033480481 @default.
- W2005941970 cites W2035524035 @default.
- W2005941970 cites W2055334158 @default.
- W2005941970 cites W2078129433 @default.
- W2005941970 cites W2097249423 @default.
- W2005941970 cites W2101952786 @default.
- W2005941970 cites W2135440354 @default.
- W2005941970 cites W2155882324 @default.
- W2005941970 cites W2164369009 @default.
- W2005941970 cites W2166958754 @default.
- W2005941970 cites W2168968238 @default.
- W2005941970 cites W2182904977 @default.
- W2005941970 cites W2184045293 @default.
- W2005941970 cites W2290182630 @default.
- W2005941970 cites W2298259941 @default.
- W2005941970 cites W2465338139 @default.
- W2005941970 doi "https://doi.org/10.1113/jphysiol.1982.sp014064" @default.
- W2005941970 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1250348" @default.
- W2005941970 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/6980272" @default.
- W2005941970 hasPublicationYear "1982" @default.
- W2005941970 type Work @default.
- W2005941970 sameAs 2005941970 @default.
- W2005941970 citedByCount "348" @default.
- W2005941970 countsByYear W20059419702012 @default.
- W2005941970 countsByYear W20059419702013 @default.
- W2005941970 countsByYear W20059419702014 @default.
- W2005941970 countsByYear W20059419702015 @default.
- W2005941970 countsByYear W20059419702016 @default.
- W2005941970 countsByYear W20059419702017 @default.
- W2005941970 countsByYear W20059419702018 @default.
- W2005941970 countsByYear W20059419702019 @default.
- W2005941970 countsByYear W20059419702020 @default.
- W2005941970 countsByYear W20059419702021 @default.
- W2005941970 countsByYear W20059419702022 @default.
- W2005941970 countsByYear W20059419702023 @default.
- W2005941970 crossrefType "journal-article" @default.
- W2005941970 hasAuthorship W2005941970A5022190236 @default.
- W2005941970 hasAuthorship W2005941970A5026493798 @default.
- W2005941970 hasBestOaLocation W20059419702 @default.
- W2005941970 hasConcept C105702510 @default.
- W2005941970 hasConcept C121332964 @default.
- W2005941970 hasConcept C121932024 @default.
- W2005941970 hasConcept C12554922 @default.
- W2005941970 hasConcept C131453863 @default.
- W2005941970 hasConcept C145148216 @default.
- W2005941970 hasConcept C147944092 @default.
- W2005941970 hasConcept C158494493 @default.
- W2005941970 hasConcept C169760540 @default.
- W2005941970 hasConcept C178790620 @default.
- W2005941970 hasConcept C181911157 @default.
- W2005941970 hasConcept C185263204 @default.
- W2005941970 hasConcept C185592680 @default.
- W2005941970 hasConcept C24998067 @default.
- W2005941970 hasConcept C26873012 @default.
- W2005941970 hasConcept C2776741303 @default.
- W2005941970 hasConcept C2778071365 @default.
- W2005941970 hasConcept C2779530196 @default.
- W2005941970 hasConcept C2781463628 @default.
- W2005941970 hasConcept C4141045 @default.
- W2005941970 hasConcept C66974803 @default.
- W2005941970 hasConcept C71240020 @default.
- W2005941970 hasConcept C74884574 @default.
- W2005941970 hasConcept C86803240 @default.
- W2005941970 hasConceptScore W2005941970C105702510 @default.
- W2005941970 hasConceptScore W2005941970C121332964 @default.
- W2005941970 hasConceptScore W2005941970C121932024 @default.
- W2005941970 hasConceptScore W2005941970C12554922 @default.
- W2005941970 hasConceptScore W2005941970C131453863 @default.
- W2005941970 hasConceptScore W2005941970C145148216 @default.
- W2005941970 hasConceptScore W2005941970C147944092 @default.
- W2005941970 hasConceptScore W2005941970C158494493 @default.
- W2005941970 hasConceptScore W2005941970C169760540 @default.
- W2005941970 hasConceptScore W2005941970C178790620 @default.
- W2005941970 hasConceptScore W2005941970C181911157 @default.
- W2005941970 hasConceptScore W2005941970C185263204 @default.
- W2005941970 hasConceptScore W2005941970C185592680 @default.
- W2005941970 hasConceptScore W2005941970C24998067 @default.
- W2005941970 hasConceptScore W2005941970C26873012 @default.
- W2005941970 hasConceptScore W2005941970C2776741303 @default.