Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005943248> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2005943248 endingPage "1412" @default.
- W2005943248 startingPage "1411" @default.
- W2005943248 abstract "NUMERICAL solutions have been obtained for a twodimensional azimuthal- (or circumferentially) invariant form of the thin-layer Navier-Stokes equations. The governing equations which have been developed are generalized over the usual two-dimensional and axisymmetric formulation by allowing nonzero velocity components in the invariant direction. The equation formulation along with the solution method is described, and results for spinning and nonspinning bodies are presented. Contents The three-dimensional flow field equations are frequently simplified for flowfields which are invariant in one coordinate direction. In the usual axisymmetric approximation, the azimuthal velocity is assumed to be zero, and the momentum equation in that direction can be eliminated. Thus, only four equations are required to be solved for four unknowns. However, for a variety of interesting flowfields, the velocity component in the invariant direction (here taken as TJ) is not zero although the governing equations are still twodimensional. Examples include viscous flow about an infinitely swept wing, the viscous flow about a spinning axisymmetric body at 0-deg angle of attack, and axisymmetric swirl flows. Each of these flows can be solved as a twodimensional problem although all three momentum equations have to be retained, and source terms replace the derivative of the flux terms in the rj-direction. Azimuthal-invariant equations are obtained from the threedimensional equations1 by making use of two restrictions: 1) all body geometries are of axisymmetric types and 2) the state variables and the contravariant velocities do not vary in the azimuthal direction. Here, TJ is used for the azimuthal coordinate, and the terms azimuthal and rj-invariant will be used interchangeably. A sketch of a typical axisymmetric body is shown in Fig. la. In order to determine the circumferential variation of typical flow and geometric parameters, we first establish correspondence between the" @default.
- W2005943248 created "2016-06-24" @default.
- W2005943248 creator A5039864776 @default.
- W2005943248 creator A5073666183 @default.
- W2005943248 creator A5080452874 @default.
- W2005943248 date "1980-12-01" @default.
- W2005943248 modified "2023-10-02" @default.
- W2005943248 title "Numerical Solution of the Azimuthal-Invariant Thin-Layer Navier-Stokes Equations" @default.
- W2005943248 cites W2046673117 @default.
- W2005943248 cites W2996895121 @default.
- W2005943248 cites W3036199432 @default.
- W2005943248 doi "https://doi.org/10.2514/3.50900" @default.
- W2005943248 hasPublicationYear "1980" @default.
- W2005943248 type Work @default.
- W2005943248 sameAs 2005943248 @default.
- W2005943248 citedByCount "33" @default.
- W2005943248 countsByYear W20059432482018 @default.
- W2005943248 countsByYear W20059432482019 @default.
- W2005943248 crossrefType "journal-article" @default.
- W2005943248 hasAuthorship W2005943248A5039864776 @default.
- W2005943248 hasAuthorship W2005943248A5073666183 @default.
- W2005943248 hasAuthorship W2005943248A5080452874 @default.
- W2005943248 hasConcept C121332964 @default.
- W2005943248 hasConcept C134306372 @default.
- W2005943248 hasConcept C159737794 @default.
- W2005943248 hasConcept C190470478 @default.
- W2005943248 hasConcept C2524010 @default.
- W2005943248 hasConcept C2781278361 @default.
- W2005943248 hasConcept C33923547 @default.
- W2005943248 hasConcept C37914503 @default.
- W2005943248 hasConcept C57879066 @default.
- W2005943248 hasConcept C74650414 @default.
- W2005943248 hasConcept C84655787 @default.
- W2005943248 hasConceptScore W2005943248C121332964 @default.
- W2005943248 hasConceptScore W2005943248C134306372 @default.
- W2005943248 hasConceptScore W2005943248C159737794 @default.
- W2005943248 hasConceptScore W2005943248C190470478 @default.
- W2005943248 hasConceptScore W2005943248C2524010 @default.
- W2005943248 hasConceptScore W2005943248C2781278361 @default.
- W2005943248 hasConceptScore W2005943248C33923547 @default.
- W2005943248 hasConceptScore W2005943248C37914503 @default.
- W2005943248 hasConceptScore W2005943248C57879066 @default.
- W2005943248 hasConceptScore W2005943248C74650414 @default.
- W2005943248 hasConceptScore W2005943248C84655787 @default.
- W2005943248 hasIssue "12" @default.
- W2005943248 hasLocation W20059432481 @default.
- W2005943248 hasOpenAccess W2005943248 @default.
- W2005943248 hasPrimaryLocation W20059432481 @default.
- W2005943248 hasRelatedWork W1985938149 @default.
- W2005943248 hasRelatedWork W2005943248 @default.
- W2005943248 hasRelatedWork W2066860538 @default.
- W2005943248 hasRelatedWork W2322668390 @default.
- W2005943248 hasRelatedWork W2376950174 @default.
- W2005943248 hasRelatedWork W2948341324 @default.
- W2005943248 hasRelatedWork W3031197106 @default.
- W2005943248 hasRelatedWork W3036199432 @default.
- W2005943248 hasRelatedWork W3100525220 @default.
- W2005943248 hasRelatedWork W3134921805 @default.
- W2005943248 hasVolume "18" @default.
- W2005943248 isParatext "false" @default.
- W2005943248 isRetracted "false" @default.
- W2005943248 magId "2005943248" @default.
- W2005943248 workType "article" @default.