Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005949282> ?p ?o ?g. }
- W2005949282 endingPage "949" @default.
- W2005949282 startingPage "941" @default.
- W2005949282 abstract "This paper reviews and assesses the current status of the use of cryogen as an energy carrier, with a focus on the thermodynamic aspects and cryogenic energy extraction. Cryogen as an energy carrier is different from normal heat storage media in that the energy storage in a cryogen occurs through decreasing its internal energy while increasing its exergy. It is shown that cryogens have a higher energy density than other commonly used thermal energy storage media, and cryogen can be efficient working media for recovering low grade heat due to their low critical temperatures. If there are high grade heat sources, a combination of the direct expansion with a Brayton cycle is shown to be the most efficient method to extract the cryogenic exergy for most cryogens. This, however, is not true for hydrogen as its latent heat accounts for only a small portion of the released cold and a simple Brayton cycle is more suitable for the exergy recovery. If there is only ambient and/or a low grade heat source, a combination of direct expansion and a Rankine cycle is more attractive due to its low power consumption in the compression process, and this appears to be more promising when carbon dioxide capture is considered." @default.
- W2005949282 created "2016-06-24" @default.
- W2005949282 creator A5007060941 @default.
- W2005949282 creator A5030865127 @default.
- W2005949282 creator A5044212436 @default.
- W2005949282 date "2010-06-01" @default.
- W2005949282 modified "2023-10-17" @default.
- W2005949282 title "Fundamentals and applications of cryogen as a thermal energy carrier: A critical assessment" @default.
- W2005949282 cites W1966863703 @default.
- W2005949282 cites W1974027827 @default.
- W2005949282 cites W1975136672 @default.
- W2005949282 cites W1975927230 @default.
- W2005949282 cites W1981902616 @default.
- W2005949282 cites W1983714346 @default.
- W2005949282 cites W1991873640 @default.
- W2005949282 cites W1994083864 @default.
- W2005949282 cites W1994800881 @default.
- W2005949282 cites W2010905934 @default.
- W2005949282 cites W2013600367 @default.
- W2005949282 cites W2014377858 @default.
- W2005949282 cites W2014871558 @default.
- W2005949282 cites W2016513161 @default.
- W2005949282 cites W2017428530 @default.
- W2005949282 cites W2020905391 @default.
- W2005949282 cites W2023977432 @default.
- W2005949282 cites W2026243465 @default.
- W2005949282 cites W2027057158 @default.
- W2005949282 cites W2028695250 @default.
- W2005949282 cites W2028823221 @default.
- W2005949282 cites W2035254321 @default.
- W2005949282 cites W2036187814 @default.
- W2005949282 cites W2038331303 @default.
- W2005949282 cites W2039091097 @default.
- W2005949282 cites W2047956740 @default.
- W2005949282 cites W2053082578 @default.
- W2005949282 cites W2053690261 @default.
- W2005949282 cites W2055780215 @default.
- W2005949282 cites W2057855273 @default.
- W2005949282 cites W2062244439 @default.
- W2005949282 cites W2065056880 @default.
- W2005949282 cites W2068123987 @default.
- W2005949282 cites W2074764470 @default.
- W2005949282 cites W2075409469 @default.
- W2005949282 cites W2081680239 @default.
- W2005949282 cites W2082181563 @default.
- W2005949282 cites W2084109529 @default.
- W2005949282 cites W2087544439 @default.
- W2005949282 cites W2093412835 @default.
- W2005949282 cites W2099203358 @default.
- W2005949282 cites W2099700977 @default.
- W2005949282 cites W2108257651 @default.
- W2005949282 cites W2151080396 @default.
- W2005949282 cites W2354177870 @default.
- W2005949282 cites W4233444998 @default.
- W2005949282 cites W4233853516 @default.
- W2005949282 cites W4241066779 @default.
- W2005949282 doi "https://doi.org/10.1016/j.ijthermalsci.2009.12.012" @default.
- W2005949282 hasPublicationYear "2010" @default.
- W2005949282 type Work @default.
- W2005949282 sameAs 2005949282 @default.
- W2005949282 citedByCount "69" @default.
- W2005949282 countsByYear W20059492822012 @default.
- W2005949282 countsByYear W20059492822013 @default.
- W2005949282 countsByYear W20059492822014 @default.
- W2005949282 countsByYear W20059492822015 @default.
- W2005949282 countsByYear W20059492822016 @default.
- W2005949282 countsByYear W20059492822017 @default.
- W2005949282 countsByYear W20059492822018 @default.
- W2005949282 countsByYear W20059492822019 @default.
- W2005949282 countsByYear W20059492822020 @default.
- W2005949282 countsByYear W20059492822021 @default.
- W2005949282 countsByYear W20059492822022 @default.
- W2005949282 countsByYear W20059492822023 @default.
- W2005949282 crossrefType "journal-article" @default.
- W2005949282 hasAuthorship W2005949282A5007060941 @default.
- W2005949282 hasAuthorship W2005949282A5030865127 @default.
- W2005949282 hasAuthorship W2005949282A5044212436 @default.
- W2005949282 hasConcept C107861326 @default.
- W2005949282 hasConcept C113146524 @default.
- W2005949282 hasConcept C116915560 @default.
- W2005949282 hasConcept C121332964 @default.
- W2005949282 hasConcept C127413603 @default.
- W2005949282 hasConcept C161911898 @default.
- W2005949282 hasConcept C163258240 @default.
- W2005949282 hasConcept C183287310 @default.
- W2005949282 hasConcept C192562407 @default.
- W2005949282 hasConcept C42611778 @default.
- W2005949282 hasConcept C44431628 @default.
- W2005949282 hasConcept C73916439 @default.
- W2005949282 hasConcept C83119724 @default.
- W2005949282 hasConcept C97355855 @default.
- W2005949282 hasConceptScore W2005949282C107861326 @default.
- W2005949282 hasConceptScore W2005949282C113146524 @default.
- W2005949282 hasConceptScore W2005949282C116915560 @default.
- W2005949282 hasConceptScore W2005949282C121332964 @default.
- W2005949282 hasConceptScore W2005949282C127413603 @default.
- W2005949282 hasConceptScore W2005949282C161911898 @default.
- W2005949282 hasConceptScore W2005949282C163258240 @default.