Matches in SemOpenAlex for { <https://semopenalex.org/work/W2005987522> ?p ?o ?g. }
- W2005987522 abstract "Accurate and reliable flood water level prediction is very difficult to achieve as it is often characterized as chaotic in nature. Prediction using conventional neural network techniques with back propagation algorithm which was widely used does not provide reliable prediction results. Flood water level is characterizing as a dynamic nonlinear properties that cannot be represented by static neural network such as back propagation algorithm. Therefore, NARX NN is propose as the identification model because it could reflect the dynamic characteristics of the flood water level, as NARX structure includes the feedback of the network output. This paper compares the prediction performances of NARX model and EKF prediction technique in flood water level prediction. EKF is well known as the best nonlinear state estimator. Results showed that NARX model performed better than EKF prediction technique." @default.
- W2005987522 created "2016-06-24" @default.
- W2005987522 creator A5024692454 @default.
- W2005987522 creator A5047471577 @default.
- W2005987522 creator A5070425101 @default.
- W2005987522 creator A5079881309 @default.
- W2005987522 date "2013-08-01" @default.
- W2005987522 modified "2023-10-12" @default.
- W2005987522 title "Flood prediction using NARX neural network and EKF prediction technique: A comparative study" @default.
- W2005987522 cites W1493971325 @default.
- W2005987522 cites W1619499024 @default.
- W2005987522 cites W1968403238 @default.
- W2005987522 cites W1984246709 @default.
- W2005987522 cites W2004867388 @default.
- W2005987522 cites W2011504567 @default.
- W2005987522 cites W2016470701 @default.
- W2005987522 cites W2017587036 @default.
- W2005987522 cites W2020383304 @default.
- W2005987522 cites W2024520223 @default.
- W2005987522 cites W2036042126 @default.
- W2005987522 cites W2041534329 @default.
- W2005987522 cites W2063756720 @default.
- W2005987522 cites W2068833943 @default.
- W2005987522 cites W2073596094 @default.
- W2005987522 cites W2080892445 @default.
- W2005987522 cites W2081060554 @default.
- W2005987522 cites W2093909726 @default.
- W2005987522 cites W2098398123 @default.
- W2005987522 cites W2100085182 @default.
- W2005987522 cites W2126289419 @default.
- W2005987522 cites W2128457724 @default.
- W2005987522 cites W2133104731 @default.
- W2005987522 cites W2137831162 @default.
- W2005987522 cites W2159164703 @default.
- W2005987522 cites W2166290763 @default.
- W2005987522 cites W2947626232 @default.
- W2005987522 cites W3017323153 @default.
- W2005987522 cites W4240172095 @default.
- W2005987522 cites W4241940748 @default.
- W2005987522 cites W603988144 @default.
- W2005987522 doi "https://doi.org/10.1109/icsengt.2013.6650171" @default.
- W2005987522 hasPublicationYear "2013" @default.
- W2005987522 type Work @default.
- W2005987522 sameAs 2005987522 @default.
- W2005987522 citedByCount "20" @default.
- W2005987522 countsByYear W20059875222013 @default.
- W2005987522 countsByYear W20059875222014 @default.
- W2005987522 countsByYear W20059875222015 @default.
- W2005987522 countsByYear W20059875222016 @default.
- W2005987522 countsByYear W20059875222017 @default.
- W2005987522 countsByYear W20059875222019 @default.
- W2005987522 countsByYear W20059875222020 @default.
- W2005987522 countsByYear W20059875222021 @default.
- W2005987522 countsByYear W20059875222022 @default.
- W2005987522 crossrefType "proceedings-article" @default.
- W2005987522 hasAuthorship W2005987522A5024692454 @default.
- W2005987522 hasAuthorship W2005987522A5047471577 @default.
- W2005987522 hasAuthorship W2005987522A5070425101 @default.
- W2005987522 hasAuthorship W2005987522A5079881309 @default.
- W2005987522 hasConcept C105795698 @default.
- W2005987522 hasConcept C119857082 @default.
- W2005987522 hasConcept C121332964 @default.
- W2005987522 hasConcept C154945302 @default.
- W2005987522 hasConcept C157286648 @default.
- W2005987522 hasConcept C158622935 @default.
- W2005987522 hasConcept C159877910 @default.
- W2005987522 hasConcept C185429906 @default.
- W2005987522 hasConcept C206833254 @default.
- W2005987522 hasConcept C33923547 @default.
- W2005987522 hasConcept C41008148 @default.
- W2005987522 hasConcept C42536954 @default.
- W2005987522 hasConcept C50644808 @default.
- W2005987522 hasConcept C62520636 @default.
- W2005987522 hasConceptScore W2005987522C105795698 @default.
- W2005987522 hasConceptScore W2005987522C119857082 @default.
- W2005987522 hasConceptScore W2005987522C121332964 @default.
- W2005987522 hasConceptScore W2005987522C154945302 @default.
- W2005987522 hasConceptScore W2005987522C157286648 @default.
- W2005987522 hasConceptScore W2005987522C158622935 @default.
- W2005987522 hasConceptScore W2005987522C159877910 @default.
- W2005987522 hasConceptScore W2005987522C185429906 @default.
- W2005987522 hasConceptScore W2005987522C206833254 @default.
- W2005987522 hasConceptScore W2005987522C33923547 @default.
- W2005987522 hasConceptScore W2005987522C41008148 @default.
- W2005987522 hasConceptScore W2005987522C42536954 @default.
- W2005987522 hasConceptScore W2005987522C50644808 @default.
- W2005987522 hasConceptScore W2005987522C62520636 @default.
- W2005987522 hasLocation W20059875221 @default.
- W2005987522 hasOpenAccess W2005987522 @default.
- W2005987522 hasPrimaryLocation W20059875221 @default.
- W2005987522 hasRelatedWork W2089574997 @default.
- W2005987522 hasRelatedWork W2177401844 @default.
- W2005987522 hasRelatedWork W2336868063 @default.
- W2005987522 hasRelatedWork W2902707689 @default.
- W2005987522 hasRelatedWork W2904357295 @default.
- W2005987522 hasRelatedWork W2990899954 @default.
- W2005987522 hasRelatedWork W3156263594 @default.
- W2005987522 hasRelatedWork W4225851526 @default.
- W2005987522 hasRelatedWork W4327796184 @default.
- W2005987522 hasRelatedWork W883676525 @default.