Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006003713> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2006003713 endingPage "430" @default.
- W2006003713 startingPage "377" @default.
- W2006003713 abstract "Considered here are detailed aspects of solitary-wave solutions of nonlinear evolution equations including the Euler equations for the propagation of gravity waves on the surface of an ideal, incompressible, inviscid fluid. Two properties will occupy our attention. The first, described already in an earlier paper, concerns the regularity of these travelling waves. In the context of certain classes of model equations for long waves in nonlinear dispersive media, we showed that solitary waves are obtained as the restriction to the real axis of functions analytic in a strip of the form {z : −a < s(z) < a} in the complex plane. In this direction, the scope of our previous discussion of model equations is broadened considerably. Moreover, it is also shown that solitary-wave solutions of the full Euler equations have the properties that the free surface is given by the restriction to the real axis of a function analytic in a strip in the complex plane and the velocity potential is the restriction to the flow domain of a function that is analytic in an open set in complex 2-space C2. The second issue considered is the asymptotic decay of solitary waves to a quiescent state away from their principal elevation. A theorem pertaining to the evanescence of solutions of certain types of one-dimensional convolution equations is formulated and proved, showing that decay is related to the smoothness of the Fourier transform of the convolution kernel k, as well as the nonlinearity present in the equation. It is demonstrated that if the Fourier transform k/_^ ϵ Hs for some s > 12, the rate of decay of a solution is at least as fast as that of the kernel k itself. This result is used to establish asymptotic properties of solitary-wave solutions of a broad class of model equations, and of solitary-wave solutions of the full Euler equations. Sont traités, dans cet article, quelques aspects détaillés des ondes solitaires solutions d'équations d'évolutions non linéaires, incluant les équations d'Euler pour la propagation des ondes gravitationnelles à la surface d'un fluide idéal, incompressible et non visqueux. Deux propriétés ont attiré notre attention. La première, déjà décrite dans un article antérieur concerne la régularité de ces ondes de translations. Dans le cadre de certaines classes d'équations modélisant les ondes longues dans un milieu non linéaire et dispersif, nous avons montré que les ondes solitaires s'obtiennent comme la restriction à l'axe réel de fonctions analytiques dans une bande de la forme {z : −a < s(z) < a} du plan complexe. Dans cette perspective, l'étendue de notre précédente discussion sur les équations modèles est considérablement élargie. En outre, il est aussi montré que les ondes solitaires solutions des équations d'Euler complètes ont les propriétés que la surface libre est donnée par la restriction à l'axe réel d'une fonction analytique dans une bande du plan complexe et que le potentiel des vitesses est la restriction au domaine du fluide d'une fonction analytique dans un ouvert d'un espace à deux dimensions sur C2. La seconde propriété considérée est la décroissance asymptotique des ondes solitaires vers un état au repos éloigné de leur maximum principal. Un théorème concernant l'évanescence des solutions de certains types d'équations de convolution unidimensionnelles est énoncé et prouvé, montrant que la décroissance est liée à la régularité de la transformée de Fourier du noyau k de convolution ainsi qu'à la non linéarité de l'équation. Il est démontré que si la transformée de Fourier k/_^ appartient àHs pour s > 12, le taux de décroissance de la solution est au moins aussi rapide que celui du noyau. Le résultat est utilisé pour établir des propriétés asymptotiques des ondes solitaires solutions d'une large classe d'équations modéles, et en particulier pour les ondes solitaires solutions des équations d'Euler complètes." @default.
- W2006003713 created "2016-06-24" @default.
- W2006003713 creator A5022788007 @default.
- W2006003713 creator A5070549966 @default.
- W2006003713 date "1997-05-01" @default.
- W2006003713 modified "2023-09-27" @default.
- W2006003713 title "Decay and analyticity of solitary waves" @default.
- W2006003713 cites W1979722387 @default.
- W2006003713 cites W1986802689 @default.
- W2006003713 cites W2015061248 @default.
- W2006003713 cites W2047296116 @default.
- W2006003713 cites W2066458678 @default.
- W2006003713 cites W2069969551 @default.
- W2006003713 cites W2071758153 @default.
- W2006003713 cites W2073085413 @default.
- W2006003713 cites W2130110124 @default.
- W2006003713 cites W2153233240 @default.
- W2006003713 doi "https://doi.org/10.1016/s0021-7824(97)89957-6" @default.
- W2006003713 hasPublicationYear "1997" @default.
- W2006003713 type Work @default.
- W2006003713 sameAs 2006003713 @default.
- W2006003713 citedByCount "100" @default.
- W2006003713 countsByYear W20060037132012 @default.
- W2006003713 countsByYear W20060037132013 @default.
- W2006003713 countsByYear W20060037132014 @default.
- W2006003713 countsByYear W20060037132015 @default.
- W2006003713 countsByYear W20060037132016 @default.
- W2006003713 countsByYear W20060037132017 @default.
- W2006003713 countsByYear W20060037132018 @default.
- W2006003713 countsByYear W20060037132019 @default.
- W2006003713 countsByYear W20060037132020 @default.
- W2006003713 countsByYear W20060037132021 @default.
- W2006003713 countsByYear W20060037132022 @default.
- W2006003713 countsByYear W20060037132023 @default.
- W2006003713 crossrefType "journal-article" @default.
- W2006003713 hasAuthorship W2006003713A5022788007 @default.
- W2006003713 hasAuthorship W2006003713A5070549966 @default.
- W2006003713 hasBestOaLocation W20060037131 @default.
- W2006003713 hasConcept C102519508 @default.
- W2006003713 hasConcept C119857082 @default.
- W2006003713 hasConcept C121332964 @default.
- W2006003713 hasConcept C134306372 @default.
- W2006003713 hasConcept C158622935 @default.
- W2006003713 hasConcept C33923547 @default.
- W2006003713 hasConcept C38409319 @default.
- W2006003713 hasConcept C41008148 @default.
- W2006003713 hasConcept C45347329 @default.
- W2006003713 hasConcept C50644808 @default.
- W2006003713 hasConcept C62520636 @default.
- W2006003713 hasConcept C74650414 @default.
- W2006003713 hasConcept C86252789 @default.
- W2006003713 hasConceptScore W2006003713C102519508 @default.
- W2006003713 hasConceptScore W2006003713C119857082 @default.
- W2006003713 hasConceptScore W2006003713C121332964 @default.
- W2006003713 hasConceptScore W2006003713C134306372 @default.
- W2006003713 hasConceptScore W2006003713C158622935 @default.
- W2006003713 hasConceptScore W2006003713C33923547 @default.
- W2006003713 hasConceptScore W2006003713C38409319 @default.
- W2006003713 hasConceptScore W2006003713C41008148 @default.
- W2006003713 hasConceptScore W2006003713C45347329 @default.
- W2006003713 hasConceptScore W2006003713C50644808 @default.
- W2006003713 hasConceptScore W2006003713C62520636 @default.
- W2006003713 hasConceptScore W2006003713C74650414 @default.
- W2006003713 hasConceptScore W2006003713C86252789 @default.
- W2006003713 hasIssue "5" @default.
- W2006003713 hasLocation W20060037131 @default.
- W2006003713 hasLocation W20060037132 @default.
- W2006003713 hasOpenAccess W2006003713 @default.
- W2006003713 hasPrimaryLocation W20060037131 @default.
- W2006003713 hasRelatedWork W1590032242 @default.
- W2006003713 hasRelatedWork W1973195575 @default.
- W2006003713 hasRelatedWork W2017499950 @default.
- W2006003713 hasRelatedWork W2052497704 @default.
- W2006003713 hasRelatedWork W2901187892 @default.
- W2006003713 hasRelatedWork W2939694431 @default.
- W2006003713 hasRelatedWork W2952406167 @default.
- W2006003713 hasRelatedWork W2991622925 @default.
- W2006003713 hasRelatedWork W3215533871 @default.
- W2006003713 hasRelatedWork W4286850057 @default.
- W2006003713 hasVolume "76" @default.
- W2006003713 isParatext "false" @default.
- W2006003713 isRetracted "false" @default.
- W2006003713 magId "2006003713" @default.
- W2006003713 workType "article" @default.