Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006021982> ?p ?o ?g. }
- W2006021982 endingPage "81" @default.
- W2006021982 startingPage "66" @default.
- W2006021982 abstract "In recent years, urbanization has been one of the most striking change processes in the socioecological system of Central Europe. Cellular automata (CA) are a popular and robust approach for the spatially explicit simulation of land-use and land-cover changes. The CA SLEUTH simulates urban growth using four simple but effective growth rules. Although the performance of SLEUTH is very high, the modeling process still is strongly influenced by stochastic decisions resulting in a variable pattern. Besides, it gives no information about the human and ecological forces driving the local suitability of urban growth. Hence, the objective of this research is to combine the simulation skills of CA with the machine learning approach called support vector machines (SVM). SVM has the basic idea to project input vectors on a higher-dimensional feature space, in which an optimal hyperplane can be constructed for separating the data into two or more classes. By using a forward feature selection, important features can be identified and separated from unimportant ones. The anchor point of coupling both methods is the exclusion layer of SLEUTH. It will be replaced by a SVM-based probability map of urban growth. As a kind of litmus test, we compare the approach with the combination of CA and binomial logistic regression (BLR), a frequently used technique in urban growth studies. The integrated models are applied to an area in the federal state of North Rhine-Westphalia involving a highly urbanized region along the Rhine valley (Cologne, Düsseldorf) and a rural, hilly region (Bergisches Land) with a dispersed settlement pattern. Various geophysical and socio-economic driving forces are included, and comparatively evaluated. The validation shows that the quantity and the allocation performance of SLEUTH are augmented clearly when coupling SLEUTH with a BLR- or SVM-based probability map. The combination enables the dynamical simulation of different growth types on the one hand as well as the analyses of various geophysical and socio-economic driving forces on the other hand. The SVM approach needs less variables than the BLR model and SVM-based probabilities exhibit a higher certainty compared to those derived by BLR." @default.
- W2006021982 created "2016-06-24" @default.
- W2006021982 creator A5058497164 @default.
- W2006021982 creator A5070181177 @default.
- W2006021982 date "2015-01-01" @default.
- W2006021982 modified "2023-10-13" @default.
- W2006021982 title "Supporting SLEUTH – Enhancing a cellular automaton with support vector machines for urban growth modeling" @default.
- W2006021982 cites W1491529885 @default.
- W2006021982 cites W1530408898 @default.
- W2006021982 cites W1936676 @default.
- W2006021982 cites W1969464918 @default.
- W2006021982 cites W1983255417 @default.
- W2006021982 cites W1986582348 @default.
- W2006021982 cites W1997313699 @default.
- W2006021982 cites W2006296944 @default.
- W2006021982 cites W2016022862 @default.
- W2006021982 cites W2019543400 @default.
- W2006021982 cites W2020492074 @default.
- W2006021982 cites W2026671738 @default.
- W2006021982 cites W2042289381 @default.
- W2006021982 cites W2048367797 @default.
- W2006021982 cites W2057212729 @default.
- W2006021982 cites W2063907334 @default.
- W2006021982 cites W2066147597 @default.
- W2006021982 cites W2079990928 @default.
- W2006021982 cites W2089892649 @default.
- W2006021982 cites W2098057602 @default.
- W2006021982 cites W2107108409 @default.
- W2006021982 cites W2107300678 @default.
- W2006021982 cites W2110538012 @default.
- W2006021982 cites W2120000166 @default.
- W2006021982 cites W2138973222 @default.
- W2006021982 cites W2139212933 @default.
- W2006021982 cites W2150185915 @default.
- W2006021982 cites W2164777277 @default.
- W2006021982 cites W2165294228 @default.
- W2006021982 cites W2165780759 @default.
- W2006021982 cites W2167415155 @default.
- W2006021982 cites W2169384781 @default.
- W2006021982 cites W2169500530 @default.
- W2006021982 cites W2169750504 @default.
- W2006021982 cites W2171730709 @default.
- W2006021982 cites W2320064570 @default.
- W2006021982 cites W2327332664 @default.
- W2006021982 cites W26215990 @default.
- W2006021982 cites W4239510810 @default.
- W2006021982 cites W4250594821 @default.
- W2006021982 doi "https://doi.org/10.1016/j.compenvurbsys.2014.05.001" @default.
- W2006021982 hasPublicationYear "2015" @default.
- W2006021982 type Work @default.
- W2006021982 sameAs 2006021982 @default.
- W2006021982 citedByCount "127" @default.
- W2006021982 countsByYear W20060219822014 @default.
- W2006021982 countsByYear W20060219822015 @default.
- W2006021982 countsByYear W20060219822016 @default.
- W2006021982 countsByYear W20060219822017 @default.
- W2006021982 countsByYear W20060219822018 @default.
- W2006021982 countsByYear W20060219822019 @default.
- W2006021982 countsByYear W20060219822020 @default.
- W2006021982 countsByYear W20060219822021 @default.
- W2006021982 countsByYear W20060219822022 @default.
- W2006021982 countsByYear W20060219822023 @default.
- W2006021982 crossrefType "journal-article" @default.
- W2006021982 hasAuthorship W2006021982A5058497164 @default.
- W2006021982 hasAuthorship W2006021982A5070181177 @default.
- W2006021982 hasConcept C119857082 @default.
- W2006021982 hasConcept C12267149 @default.
- W2006021982 hasConcept C127413603 @default.
- W2006021982 hasConcept C134306372 @default.
- W2006021982 hasConcept C138885662 @default.
- W2006021982 hasConcept C147176958 @default.
- W2006021982 hasConcept C148483581 @default.
- W2006021982 hasConcept C154945302 @default.
- W2006021982 hasConcept C182365436 @default.
- W2006021982 hasConcept C18903297 @default.
- W2006021982 hasConcept C205649164 @default.
- W2006021982 hasConcept C2524010 @default.
- W2006021982 hasConcept C2776401178 @default.
- W2006021982 hasConcept C2780648208 @default.
- W2006021982 hasConcept C33923547 @default.
- W2006021982 hasConcept C35527583 @default.
- W2006021982 hasConcept C39853841 @default.
- W2006021982 hasConcept C41008148 @default.
- W2006021982 hasConcept C41895202 @default.
- W2006021982 hasConcept C4792198 @default.
- W2006021982 hasConcept C68693459 @default.
- W2006021982 hasConcept C86803240 @default.
- W2006021982 hasConceptScore W2006021982C119857082 @default.
- W2006021982 hasConceptScore W2006021982C12267149 @default.
- W2006021982 hasConceptScore W2006021982C127413603 @default.
- W2006021982 hasConceptScore W2006021982C134306372 @default.
- W2006021982 hasConceptScore W2006021982C138885662 @default.
- W2006021982 hasConceptScore W2006021982C147176958 @default.
- W2006021982 hasConceptScore W2006021982C148483581 @default.
- W2006021982 hasConceptScore W2006021982C154945302 @default.
- W2006021982 hasConceptScore W2006021982C182365436 @default.
- W2006021982 hasConceptScore W2006021982C18903297 @default.
- W2006021982 hasConceptScore W2006021982C205649164 @default.