Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006082238> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2006082238 abstract "Recent work on gas turbine diagnostics based on optimisation techniques advocates two different approaches: 1) Stochastic optimisation, including Genetic Algorithm techniques, for its robustness when optimising objective functions with many local optima and 2) Gradient based methods mainly for their computational efficiency. For smooth and single optimum functions, gradient methods are known to provide superior numerical performance. This paper addresses the key issue for method selection, i.e. whether multiple local optima may occur when the optimisation approach is applied to real engine testing. Two performance test data sets for the RM12 low bypass ratio turbofan engine, powering the Swedish Fighter Gripen, have been analysed. One set of data was recorded during performance testing of a highly degraded engine. This engine has been subjected to Accelerated Mission Testing (AMT) cycles corresponding to more than 4000 hours of run time. The other data set was recorded for a development engine with less than 200 hours of operation. The search for multiple optima was performed starting from more than 100 extreme points. Not a single case of multi-modality was encountered, i.e. one unique solution for each of the two data sets was consistently obtained. The RM12 engine cycle is typical for a modern fighter engine, implying that the obtained results can be transferred to, at least, most low bypass ratio turbofan engines. The paper goes on to describe the numerical difficulties that had to be resolved to obtain efficient and robust performance by the gradient solvers. Ill conditioning and noise may, as illustrated on a model problem, introduce local optima without a correspondence in the gas turbine physics. Numerical methods exploiting the special problem structure represented by a non-linear least squares formulation is given special attention. Finally, a mixed norm allowing for both robustness and numerical efficiency is suggested." @default.
- W2006082238 created "2016-06-24" @default.
- W2006082238 creator A5012617430 @default.
- W2006082238 creator A5046468967 @default.
- W2006082238 date "2004-01-01" @default.
- W2006082238 modified "2023-10-16" @default.
- W2006082238 title "A Comparative Study of Genetic Algorithms and Gradient Methods for RM12 Turbofan Engine Diagnostics and Performance Estimation" @default.
- W2006082238 doi "https://doi.org/10.1115/gt2004-53591" @default.
- W2006082238 hasPublicationYear "2004" @default.
- W2006082238 type Work @default.
- W2006082238 sameAs 2006082238 @default.
- W2006082238 citedByCount "8" @default.
- W2006082238 countsByYear W20060822382017 @default.
- W2006082238 countsByYear W20060822382018 @default.
- W2006082238 countsByYear W20060822382019 @default.
- W2006082238 crossrefType "proceedings-article" @default.
- W2006082238 hasAuthorship W2006082238A5012617430 @default.
- W2006082238 hasAuthorship W2006082238A5046468967 @default.
- W2006082238 hasConcept C104317684 @default.
- W2006082238 hasConcept C110050840 @default.
- W2006082238 hasConcept C11413529 @default.
- W2006082238 hasConcept C126255220 @default.
- W2006082238 hasConcept C127413603 @default.
- W2006082238 hasConcept C141934464 @default.
- W2006082238 hasConcept C171146098 @default.
- W2006082238 hasConcept C177264268 @default.
- W2006082238 hasConcept C185592680 @default.
- W2006082238 hasConcept C199360897 @default.
- W2006082238 hasConcept C33923547 @default.
- W2006082238 hasConcept C41008148 @default.
- W2006082238 hasConcept C55493867 @default.
- W2006082238 hasConcept C63479239 @default.
- W2006082238 hasConceptScore W2006082238C104317684 @default.
- W2006082238 hasConceptScore W2006082238C110050840 @default.
- W2006082238 hasConceptScore W2006082238C11413529 @default.
- W2006082238 hasConceptScore W2006082238C126255220 @default.
- W2006082238 hasConceptScore W2006082238C127413603 @default.
- W2006082238 hasConceptScore W2006082238C141934464 @default.
- W2006082238 hasConceptScore W2006082238C171146098 @default.
- W2006082238 hasConceptScore W2006082238C177264268 @default.
- W2006082238 hasConceptScore W2006082238C185592680 @default.
- W2006082238 hasConceptScore W2006082238C199360897 @default.
- W2006082238 hasConceptScore W2006082238C33923547 @default.
- W2006082238 hasConceptScore W2006082238C41008148 @default.
- W2006082238 hasConceptScore W2006082238C55493867 @default.
- W2006082238 hasConceptScore W2006082238C63479239 @default.
- W2006082238 hasLocation W20060822381 @default.
- W2006082238 hasOpenAccess W2006082238 @default.
- W2006082238 hasPrimaryLocation W20060822381 @default.
- W2006082238 hasRelatedWork W1481179460 @default.
- W2006082238 hasRelatedWork W2168051903 @default.
- W2006082238 hasRelatedWork W2201440105 @default.
- W2006082238 hasRelatedWork W2363475415 @default.
- W2006082238 hasRelatedWork W2387861327 @default.
- W2006082238 hasRelatedWork W2481234381 @default.
- W2006082238 hasRelatedWork W2754867922 @default.
- W2006082238 hasRelatedWork W3205859076 @default.
- W2006082238 hasRelatedWork W4225434102 @default.
- W2006082238 hasRelatedWork W4239295757 @default.
- W2006082238 isParatext "false" @default.
- W2006082238 isRetracted "false" @default.
- W2006082238 magId "2006082238" @default.
- W2006082238 workType "article" @default.